Timezone: »
In the era of big astronomical surveys, our ability to leverage artificial intelligence algorithms simultaneously for multiple datasets will open new avenues for scientific discovery. Unfortunately, simply training a deep neural network on images from one data domain often leads to very poor performance on any other dataset. Here we develop a Universal Domain Adaptation method DeepAstroUDA, capable of performing semi-supervised domain alignment that can be applied to datasets with different types of class overlap. Extra classes can be present in any of the two datasets, and the method can even be used in the presence of unknown classes. For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets (from SDSS and DeCALS). We show that our method is capable of bridging the gap between two astronomical surveys, and also performs well for anomaly detection and clustering of unknown data in the unlabeled dataset. We apply our model to two examples of galaxy morphology classification tasks with anomaly detection: 1) classifying spiral and elliptical galaxies with detection of merging galaxies (three classes including one unknown anomaly class); 2) a more granular problem where the classes describe more detailed morphological properties of galaxies, with the detection of gravitational lenses (ten classes including one unknown anomaly class).
Author Information
Aleksandra Ciprijanovic (Fermi National Accelerator Laboratory)
Ashia Lewis (Fermilab)
Kevin Pedro (Fermilab)
Sandeep Madireddy (Argonne National Laboratory)
Brian Nord (Fermi National Accelerator Laboratory)
Gabriel Nathan Perdue (Fermilab)
Stefan Wild (Argonne National Laboratory)
More from the Same Authors
-
2021 : Physical Benchmarking for AI-generated Cosmic Web »
Xiaofeng Dong · Salman Habib · Sandeep Madireddy -
2021 : Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts in astronomical images »
Dimitrios Tanoglidis · Aleksandra Ciprijanovic -
2021 : Robustness of deep learning algorithms in astronomy - galaxy morphology studies »
Aleksandra Ciprijanovic · Diana Kafkes · Gabriel Nathan Perdue · Sandeep Madireddy · Stefan Wild · Brian Nord -
2021 : DeepZipper: A Novel Deep Learning Architecture for Lensed Supernovae Identification »
Robert Morgan · Brian Nord -
2021 : Error Analysis of Kilonova Surrogate Models »
Kamile Lukosiute · Brian Nord -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation »
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre -
2022 : Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference »
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar -
2022 : General policy mapping: online continual reinforcement learning inspired on the insect brain »
Angel Yanguas-Gil · Sandeep Madireddy -
2022 : Towards Continually Learning Application Performance Models »
Ray Sinurat · Sandeep Madireddy · Anurag Daram · Haryadi Gunawi · Robert Ross -
2022 : Unified Probabilistic Neural Architecture and Weight Ensembling Improves Model Robustness »
Sumegha Premchandar · Sanket Jantre · Prasanna Balaprakash · Sandeep Madireddy -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2016 Poster: Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian »
Victor Picheny · Robert B Gramacy · Stefan Wild · Sebastien Le Digabel