Timezone: »
We present a deep neural network (DNN)-based model, the HubbardNet, to variationally solve for the ground state and excited state wavefunctions of the one-dimensional and two-dimensional Bose-Hubbard model on a square lattice. Using this model, we obtain the Bose-Hubbard energy spectrum as an analytic function of the Coulomb parameter, U, and the total number of particles, N, from a single training, bypassing the need to solve a new hamiltonian for each different input. We show that the DNN-parametrized solutions have excellent agreement with exact diagonalization while outperforming exact diagonalization in terms of computational scaling, suggesting that our model is promising for efficient, accurate computation of exact phase diagrams of many-body lattice hamiltonians.
Author Information
Ziyan Zhu (Stanford University)
Marios Mattheakis (Harvard University)
Weiwei Pan (Harvard University)
Efthimios Kaxiras (Harvard University)
More from the Same Authors
-
2022 : An Empirical Analysis of the Advantages of Finite vs.~Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2022 : Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows »
Raphael Pellegrin · Blake Bullwinkel · Marios Mattheakis · Pavlos Protopapas -
2022 : First principles physics-informed neural network for quantum wavefunctions and eigenvalue surfaces »
Marios Mattheakis · Gabriel R. Schleder · Daniel Larson · Efthimios Kaxiras -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Zixi Chen · Varshini Subhash · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : An Empirical Analysis of the Advantages of Finite v.s. Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2020 : Invited Talk: Weiwei Pan - What are Useful Uncertainties for Deep Learning and How Do We Get Them? »
Weiwei Pan