Timezone: »
With the advent of billion-galaxy surveys with complex data, the need of the hour is to efficiently model galaxy spectral energy distributions (SEDs) with robust uncertainty quantification. The combination of Simulation-Based inference (SBI) and amortized Neural Posterior Estimation (NPE) has been successfully used to analyse simulated and real galaxy photometry both precisely and efficiently.Here, we demonstrate a proof-of-concept study of spectra that is a) an efficient analysis of galaxy SEDs and inference of galaxy parameters with physically interpretable uncertainties; and b) amortized calculations of posterior distributions of said galaxy parameters at the modest cost of a few galaxy fits with MCMC methods. We show that SBI is capable of inferring very accurate galaxy stellar masses and metallicities. Our methodology also a) produces uncertainty constraints that are comparable to or moderately weaker than traditional inverse-modeling with Bayesian MCMC methods (e.g., 0.17 and 0.26 dex in stellar mass and metallicity for a given galaxy, respectively), and b) conducts rapid SED inference (~10^5 galaxy spectra via SBI/SNPE at the cost of 1 MCMC-based fit); this efficiency is needed in the era of JWST and Roman Telescope.
Author Information
Gourav Khullar (University of Pittsburgh)
Brian Nord (Fermi National Accelerator Laboratory)
Aleksandra Ciprijanovic (Fermi National Accelerator Laboratory)
Jason Poh (University of Chicago)
Hi! I’m a final year PhD candidate in astrophysics looking for a full time job as a data scientist or machine learning researcher. My research is at the intersection of large scale astronomy surveys and machine learning methods to analyze that survey data. I look forward to networking with you!
Fei Xu (University of Chicago)
Ashwin Samudre (Simon Fraser University)
More from the Same Authors
-
2021 : Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts in astronomical images »
Dimitrios Tanoglidis · Aleksandra Ciprijanovic -
2021 : Robustness of deep learning algorithms in astronomy - galaxy morphology studies »
Aleksandra Ciprijanovic · Diana Kafkes · Gabriel Nathan Perdue · Sandeep Madireddy · Stefan Wild · Brian Nord -
2021 : DeepZipper: A Novel Deep Learning Architecture for Lensed Supernovae Identification »
Robert Morgan · Brian Nord -
2021 : Error Analysis of Kilonova Surrogate Models »
Kamile Lukosiute · Brian Nord -
2022 : Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection »
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : Strong Lensing Parameter Estimation on Ground-Based Imaging Data Using Simulation-Based Inference »
Jason Poh · Ashwin Samudre · Aleksandra Ciprijanovic · Brian Nord · Joshua Frieman · Gourav Khullar -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais