Timezone: »
Current ground-based cosmological surveys, such as the Dark Energy Survey (DES), are predicted to discover thousands of galaxy-scale strong lenses, while future surveys, such as the Vera Rubin Observatory Legacy Survey of Space and Time (LSST) will increase that number by 1-2 orders of magnitude. The large number of strong lenses discoverable in future surveys will make strong lensing a highly competitive and complementary cosmic probe.To leverage the increased statistical power of the lenses that will be discovered through upcoming surveys, automated lens analysis techniques are necessary. We present two Simulation-Based Inference (SBI) approaches for lens parameter estimation of galaxy-galaxy lenses. We demonstrate successful application of Neural Density Estimators (NPE) to automate the inference of a 12-parameter lens mass model for DES-like ground-based imaging data. We compare our NPE constraints to a Bayesian Neural Network (BNN) and find that it outperforms the BNN, producing posterior distributions that are for the most part both more accurate and more precise; in particular, several source-light model parameters are systematically biased in the BNN implementation.
Author Information
Jason Poh (University of Chicago)
Hi! I’m a final year PhD candidate in astrophysics looking for a full time job as a data scientist or machine learning researcher. My research is at the intersection of large scale astronomy surveys and machine learning methods to analyze that survey data. I look forward to networking with you!
Ashwin Samudre (Simon Fraser University)
Aleksandra Ciprijanovic (Fermi National Accelerator Laboratory)
Brian Nord (Fermi National Accelerator Laboratory)
Joshua Frieman (University of Chicago)
Gourav Khullar (University of Pittsburgh)
More from the Same Authors
-
2021 : Using Mask R-CNN to detect and mask ghosting and scattered-light artifacts in astronomical images »
Dimitrios Tanoglidis · Aleksandra Ciprijanovic -
2021 : Robustness of deep learning algorithms in astronomy - galaxy morphology studies »
Aleksandra Ciprijanovic · Diana Kafkes · Gabriel Nathan Perdue · Sandeep Madireddy · Stefan Wild · Brian Nord -
2021 : DeepZipper: A Novel Deep Learning Architecture for Lensed Supernovae Identification »
Robert Morgan · Brian Nord -
2021 : Error Analysis of Kilonova Surrogate Models »
Kamile Lukosiute · Brian Nord -
2022 : Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology Classification and Anomaly Detection »
Aleksandra Ciprijanovic · Ashia Lewis · Kevin Pedro · Sandeep Madireddy · Brian Nord · Gabriel Nathan Perdue · Stefan Wild -
2022 : Neural Inference of Gaussian Processes for Time Series Data of Quasars »
Egor Danilov · Aleksandra Ciprijanovic · Brian Nord -
2022 : A robust estimator of mutual information for deep learning interpretability »
Davide Piras · Hiranya Peiris · Andrew Pontzen · Luisa Lucie-Smith · Brian Nord · Ningyuan (Lillian) Guo -
2022 : DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation »
Gourav Khullar · Brian Nord · Aleksandra Ciprijanovic · Jason Poh · Fei Xu · Ashwin Samudre -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais