Timezone: »
Deconvolving Detector Effects for Distribution Moments
Krish Desai · Benjamin Nachman · Jesse Thaler
Deconvolving (`unfolding') detector distortions is a critical step in the comparison of cross section measurements with theoretical predictions in particle and nuclear physics. However, most extant unfolding approaches require histogram binning while many theoretical predictions are at the level of moments. We develop a new approach to directly unfold distribution moments as a function of other observables without having to first discretize the data. Our Moment Unfolding technique uses machine learning and is inspired by Generative Adversarial Networks (GANs). We demonstrate the performance of this approach using jet substructure measurements in collider physics.
Author Information
Krish Desai (University of California, Berkeley)
Benjamin Nachman (Lawrence Berkeley National Laboratory)
Jesse Thaler (MIT)
More from the Same Authors
-
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder -
2021 : Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale »
Aishik Ghosh · Benjamin Nachman -
2021 : Symmetry Discovery with Deep Learning »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2022 : Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics »
Rikab Gambhir · Jesse Thaler · Benjamin Nachman -
2022 : Efficiently Moving Instead of Reweighting Collider Events with Machine Learning »
Radha Mastandrea · Benjamin Nachman -
2022 : Particle-level Compression for New Physics Searches »
Yifeng Huang · Jack Collins · Benjamin Nachman · Simon Knapen · Daniel Whiteson -
2022 : One-Class Dense Networks for Anomaly Detection »
Norman Karr · Benjamin Nachman · David Shih -
2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
Mayee Chen · Benjamin Nachman · Frederic Sala -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy