Timezone: »
In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based β Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter β controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of β through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our β VAE has enough fidelity to distinguish distinct signal morphologies.
Author Information
Yifeng Huang (University of California, Irvine)
Jack Collins (SLAC National Accelerator Laboratory)
Benjamin Nachman (Lawrence Berkeley National Laboratory)
Simon Knapen (Lawrence Berkeley National Laboratory)
Daniel Whiteson (University of California Irvine)
More from the Same Authors
-
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder -
2021 : Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale »
Aishik Ghosh · Benjamin Nachman -
2021 : Symmetry Discovery with Deep Learning »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2022 : Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics »
Rikab Gambhir · Jesse Thaler · Benjamin Nachman -
2022 : Efficiently Moving Instead of Reweighting Collider Events with Machine Learning »
Radha Mastandrea · Benjamin Nachman -
2022 : Deconvolving Detector Effects for Distribution Moments »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2022 : One-Class Dense Networks for Anomaly Detection »
Norman Karr · Benjamin Nachman · David Shih -
2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
Mayee Chen · Benjamin Nachman · Frederic Sala -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2015 : Open ML Problems in High Energy Physics »
Daniel Whiteson -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Poster: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi -
2014 Spotlight: Searching for Higgs Boson Decay Modes with Deep Learning »
Peter Sadowski · Daniel Whiteson · Pierre Baldi