Timezone: »
An important class of techniques for resonant anomaly detection in high energy physics builds models that can distinguish between reference and target datasets, where only the latter has appreciable signal. Such techniques, including Classification Without Labels (CWoLa) and Simulation Assisted Likelihood-free Anomaly Detection (SALAD) rely on a single reference dataset. They cannot take advantage of commonly-available multiple datasets and thus cannot fully exploit available information. In this work, we propose generalizations of CWoLa and SALAD for settings where multiple reference datasets are available, building on weak supervision techniques. We demonstrate improved performance in a number of settings with real and synthetic data. As an added benefit, our generalizations enable us to provide finite-sample guarantees, improving on existing asymptotic analyses.
Author Information
Mayee Chen (Stanford University)
Benjamin Nachman (Lawrence Berkeley National Laboratory)
Frederic Sala (University of Wisconsin, Madison)
More from the Same Authors
-
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2021 : Classifying Anomalies THrough Outer Density Estimation (CATHODE) »
Joshua Isaacson · Gregor Kasieczka · Benjamin Nachman · David Shih · Manuel Sommerhalder -
2021 : Uncertainty Aware Learning for High Energy Physics With A Cautionary Tale »
Aishik Ghosh · Benjamin Nachman -
2021 : Symmetry Discovery with Deep Learning »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2021 : Latent Space Refinement for Deep Generative Models »
Ramon Winterhalder · Marco Bellagente · Benjamin Nachman -
2022 : Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics »
Rikab Gambhir · Jesse Thaler · Benjamin Nachman -
2022 : Efficiently Moving Instead of Reweighting Collider Events with Machine Learning »
Radha Mastandrea · Benjamin Nachman -
2022 : Deconvolving Detector Effects for Distribution Moments »
Krish Desai · Benjamin Nachman · Jesse Thaler -
2022 : Particle-level Compression for New Physics Searches »
Yifeng Huang · Jack Collins · Benjamin Nachman · Simon Knapen · Daniel Whiteson -
2022 : One-Class Dense Networks for Anomaly Detection »
Norman Karr · Benjamin Nachman · David Shih -
2022 : AutoML for Climate Change: A Call to Action »
Renbo Tu · Nicholas Roberts · Vishak Prasad C · Sibasis Nayak · Paarth Jain · Frederic Sala · Ganesh Ramakrishnan · Ameet Talwalkar · Willie Neiswanger · Colin White -
2022 : Domain Generalization with Nuclear Norm Regularization »
Zhenmei Shi · Yifei Ming · Ying Fan · Frederic Sala · Yingyu Liang -
2023 Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences »
Brian Nord · Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Siddharth Mishra-Sharma · Benjamin Nachman · Kyle Cranmer · Gilles Louppe · Savannah Thais -
2022 Competition: AutoML Decathlon: Diverse Tasks, Modern Methods, and Efficiency at Scale »
Samuel Guo · Cong Xu · Nicholas Roberts · Misha Khodak · Junhong Shen · Evan Sparks · Ameet Talwalkar · Yuriy Nevmyvaka · Frederic Sala · Anderson Schneider -
2022 : Panel »
Mayee Chen · Alexander Ratner · Robert Nowak · Cody Coleman · Ramya Korlakai Vinayak -
2022 : Q & A »
Frederic Sala · Ramya Korlakai Vinayak -
2022 Tutorial: Theory and Practice of Efficient and Accurate Dataset Construction »
Frederic Sala · Ramya Korlakai Vinayak -
2022 : Tutorial part 1 »
Frederic Sala · Ramya Korlakai Vinayak -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 Poster: AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels »
Nicholas Roberts · Xintong Li · Tzu-Heng Huang · Dyah Adila · Spencer Schoenberg · Cheng-Yu Liu · Lauren Pick · Haotian Ma · Aws Albarghouthi · Frederic Sala -
2022 Poster: Lifting Weak Supervision To Structured Prediction »
Harit Vishwakarma · Frederic Sala -
2022 Poster: NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks »
Renbo Tu · Nicholas Roberts · Misha Khodak · Junhong Shen · Frederic Sala · Ameet Talwalkar -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy