Timezone: »
The rise in screen time and the isolation brought by the different containment measures implemented during the COVID-19 pandemic have led to an alarming increase in cases of online grooming. Online grooming is defined as all the strategies used by predators to lure children into sexual exploitation. Previous attempts made on the detection of grooming in the industry and academia rely on accessing and monitoring users’ private conversations through the training of a model centrally or by sending personal conversations to a global server. We introduce a first, privacy-preserving, cross-device, federated learning framework for the early detection of sexual predators, which aims to ensure a safe online environment for children while respecting their privacy. Empirical evaluation on a real-world dataset indicates that the performance of our framework is as good as the performance of a centrally trained model.
Author Information
Khaoula Chehbouni (Mila)
Gilles Caporossi (HEC Montreal)
Reihaneh Rabbany (McGill, Mila)
Martine De Cock (University of Washington Tacoma)
Golnoosh Farnadi (Mila)
More from the Same Authors
-
2021 : Curating the Twitter Election Integrity Datasets forBetter Online Troll Characterization »
Albert Orozco Camacho · Reihaneh Rabbany -
2022 : Exposure Fairness in Music Recommendation »
Rebecca Salganik · Fernando Diaz · Golnoosh Farnadi -
2022 : Towards Private and Fair Federated Learning »
Sikha Pentyala · Nicola Neophytou · Anderson Nascimento · Martine De Cock · Golnoosh Farnadi -
2022 : human trafficking detection using lockstep behaviour methods »
Maricarmen Arenas · reihaneh rabbany · Golnoosh Farnadi -
2022 : Fair Targeted Immunization with Dynamic Influence Maximization »
Nicola Neophytou · Golnoosh Farnadi -
2022 : Early Detection of Sexual Predators with Federated Learning »
Khaoula Chehbouni · Gilles Caporossi · Reihaneh Rabbany · Martine De Cock · Golnoosh Farnadi -
2022 : Privacy-Preserving Group Fairness in Cross-Device Federated Learning »
Sikha Pentyala · Nicola Neophytou · Anderson Nascimento · Martine De Cock · Golnoosh Farnadi -
2023 Poster: Temporal Graph Benchmark for Machine Learning on Temporal Graphs »
Shenyang Huang · Farimah Poursafaei · Jacob Danovitch · Matthias Fey · Weihua Hu · Emanuele Rossi · Jure Leskovec · Michael Bronstein · Guillaume Rabusseau · Reihaneh Rabbany -
2023 Workshop: Temporal Graph Learning Workshop @ NeurIPS 2023 »
Farimah Poursafaei · Shenyang Huang · Kellin Pelrine · Julia Gastinger · Emanuele Rossi · Michael Bronstein · Reihaneh Rabbany -
2023 Workshop: Algorithmic Fairness through the Lens of Time »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Jessica Schrouff -
2022 : Q & A »
Golnoosh Farnadi · Elliot Creager · Q.Vera Liao -
2022 : Tutorial part 1 »
Golnoosh Farnadi -
2022 Tutorial: Algorithmic fairness: at the intersections »
Golnoosh Farnadi · Q.Vera Liao · Elliot Creager -
2022 : Closing Remark »
Reihaneh Rabbany -
2022 Workshop: Algorithmic Fairness through the Lens of Causality and Privacy »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Matt Kusner · Jessica Schrouff -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 : Secure Multiparty Computation for Synthetic Data Generation from Distributed Data »
Mayana Pereira · Sikha Pentyala · Martine De Cock · Anderson Nascimento · Rafael Timóteo de Sousa Júnior -
2022 Poster: Towards Better Evaluation for Dynamic Link Prediction »
Farimah Poursafaei · Shenyang Huang · Kellin Pelrine · Reihaneh Rabbany -
2021 Workshop: Algorithmic Fairness through the lens of Causality and Robustness »
Jessica Schrouff · Awa Dieng · Golnoosh Farnadi · Mark Kwegyir-Aggrey · Miriam Rateike -
2021 : Q & A Spotlight Presentations »
Hector Mejia · Juan Banda · Javier Orduz · Joel Cabrera Rios · Reihaneh Rabbany · Jose Gallego-Posada · Edson F. Luque -
2021 : Curating the Twitter Election Integrity Datasets forBetter Online Troll Characterization »
Albert Orozco Camacho · Reihaneh Rabbany -
2020 Workshop: Algorithmic Fairness through the Lens of Causality and Interpretability »
Awa Dieng · Jessica Schrouff · Matt Kusner · Golnoosh Farnadi · Fernando Diaz -
2020 Poster: Counterexample-Guided Learning of Monotonic Neural Networks »
Aishwarya Sivaraman · Golnoosh Farnadi · Todd Millstein · Guy Van den Broeck -
2019 Poster: Privacy-Preserving Classification of Personal Text Messages with Secure Multi-Party Computation »
Devin Reich · Ariel Todoki · Rafael Dowsley · Martine De Cock · Anderson Nascimento -
2017 : Poster Sessions »
Dennis Forster · David I Inouye · Shashank Srivastava · Martine De Cock · Srinagesh Sharma · Mateusz Kozinski · Petr Babkin · maxime he · Zhe Cui · Shivani Rao · Ramesh Raskar · Pradipto Das · Albert Zhao · Ravi Lanka