Timezone: »
Graph Attention for Spatial Prediction
Corban Rivera · Ryan Gardner
Imbuing robots with human-levels of intelligence is a longstanding goal of AI research.A critical aspect of human-level intelligence is spatial reasoning. Spatial reasoning requires a robot to reason about relationships among objects in an environment to estimate the positions of unseen objects. In this work, we introduced a novel graph attention approach for predicting the locations of query objects in partially observable environments. We found that our approach achieved state of the art results on object location prediction tasks. Then, we evaluated our approach on never before seen objects, and we observed zero-shot generalization to estimate the positions of new object types.
Author Information
Corban Rivera (JHU)
Ryan Gardner (Johns Hopkins University Applied Physics Laboratory)
More from the Same Authors
-
2022 : Fifteen-minute Competition Overview Video »
Nathan Drenkow · Raman Arora · Gino Perrotta · Todd Neller · Ryan Gardner · Mykel J Kochenderfer · Jared Markowitz · Corey Lowman · Casey Richardson · Bo Li · Bart Paulhamus · Ashley J Llorens · Andrew Newman -
2022 Competition: Reconnaissance Blind Chess: An Unsolved Challenge for Multi-Agent Decision Making Under Uncertainty »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2021 : Reconnaissance Blind Chess + Q&A »
Ryan Gardner · Gino Perrotta · Corey Lowman · Casey Richardson · Andrew Newman · Jared Markowitz · Nathan Drenkow · Bart Paulhamus · Ashley J Llorens · Todd Neller · Raman Arora · Bo Li · Mykel J Kochenderfer -
2019 : Reconnaissance Blind Chess competition »
Ashley Llorens · Ryan Gardner · Gino Perrotta · Timothy Highley · Gregory Clark · Robert Perrotta · William Bernardoni · Mark Jordan · I-Jeng Wang · Xue Bin Peng