Timezone: »

 
How Small Amount of Data Sharing Benefits Higher-Order Distributed Optimization and Learning
Mingxi Zhu · Yinyu Ye

Distributed optimization algorithms have been widely used in machine learning and statistical estimation. While distributed algorithms have the merits in parallel processing and protecting local data security, they often suffer from slow convergence compared with centralized optimization algorithms. This paper focuses on how small amount of data sharing could benefit distributed higher-order optimization algorithms with its application in learning problems. Specifically, we consider how data sharing could benefit distributed multi-block alternating direction method of multipliers (ADMM) and preconditioned conjugate gradient method (PCG) with application in machine learning tasks of linear and logistic regression. These algorithms are commonly known as algorithms between the first and the second order methods. Theoretically, we prove that a small amount of data share leads to improvements from near-worst to near-optimal convergence rate when applying ADMM and PCG methods to machine learning tasks. A side theory product is the tight worst-case bound of linear convergence rate for distributed ADMM applied in linear regression. We further propose a meta randomized data-sharing scheme and provide its tailored applications in multi-block ADMM and PCG methods in order to enjoy both the benefit from data-sharing and from the efficiency of distributed computing. From the numerical evidences, we are convinced that our algorithms provide good quality of estimators in both the least square and the logistic regressions within much fewer iterations by only sharing a small amount of pre-fixed data, while purely distributed optimization algorithms may take hundreds more times of iterations to converge. We hope that the discovery resulted from this paper would encourage even small amount of data sharing among different regions to combat difficult global learning problems.

Author Information

Mingxi Zhu (Stanford University)
Yinyu Ye (Standord)

More from the Same Authors

  • 2022 : DIMENSION-REDUCED ADAPTIVE GRADIENT METHOD »
    Jingyang Li · Pan Zhou · Kuangyu Ding · Kim-Chuan Toh · Yinyu Ye
  • 2021 : Online Learning via Linear Programming, Yinyu Ye »
    Yinyu Ye
  • 2020 Poster: Simple and Fast Algorithm for Binary Integer and Online Linear Programming »
    Xiaocheng Li · Chunlin Sun · Yinyu Ye
  • 2020 Poster: Conic Descent and its Application to Memory-efficient Optimization over Positive Semidefinite Matrices »
    John Duchi · Oliver Hinder · Andrew Naber · Yinyu Ye
  • 2020 Poster: Distributionally Robust Local Non-parametric Conditional Estimation »
    Viet Anh Nguyen · Fan Zhang · Jose Blanchet · Erick Delage · Yinyu Ye
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Poster Spotlight 2 »
    Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare
  • 2019 Poster: Interior-Point Methods Strike Back: Solving the Wasserstein Barycenter Problem »
    DongDong Ge · Haoyue Wang · Zikai Xiong · Yinyu Ye
  • 2018 Poster: Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative Model »
    Aaron Sidford · Mengdi Wang · Xian Wu · Lin Yang · Yinyu Ye