Timezone: »
A number of competing hypotheses have been proposed to explain why small-batch Stochastic Gradient Descent (SGD) leads to improved generalization over the full-batch regime, with recent work crediting the implicit regularization of various quantities throughout training. However, to date, empirical evidence assessing the explanatory power of these hypotheses is lacking. In this paper, we conduct an extensive empirical evaluation, focusing on the ability of various theorized mechanisms to close the small-to-large batch generalization gap. Additionally, we characterize how the quantities that SGD has been claimed to (implicitly) regularize change over the course of training. By using micro-batches, i.e. disjoint smaller subsets of each mini-batch, we empirically show that explicitly penalizing the gradient norm or the Fisher Information Matrix trace, averaged over micro-batches, in the large-batch regime recovers small-batch SGD generalization, whereas Jacobian-based regularizations fail to do so. This generalization performance is shown to often be correlated with how well the regularized model’s gradient norms resemble those of small-batch SGD. We additionally show that this behavior breaks down as the micro-batch size approaches the batch size. Finally, we note that in this line of inquiry, positive experimental findings on CIFAR10 are often reversed on other datasets like CIFAR100, highlighting the need to test hypotheses on a wider collection of datasets.
Author Information
Zachary Novack (UC San Diego)
Simran Kaur (Princeton University)
Tanya Marwah (Carnegie Mellon University)
Saurabh Garg (Carnegie Mellon University)
Zachary Lipton (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 Spotlight: Parametric Complexity Bounds for Approximating PDEs with Neural Networks »
Tanya Marwah · Zachary Lipton · Andrej Risteski -
2021 : Model-Free Learning for Continuous Timing as an Action »
Helen Zhou · David Childers · Zachary Lipton -
2021 : Leveraging Unlabeled Data to Predict Out-of-Distribution Performance »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton · Behnam Neyshabur · Hanie Sedghi -
2022 : Downstream Datasets Make Surprisingly Good Pretraining Corpora »
Kundan Krishna · Saurabh Garg · Jeffrey Bigham · Zachary Lipton -
2022 : Deconstructing Distributions: A Pointwise Framework of Learning »
Gal Kaplun · Nikhil Ghosh · Saurabh Garg · Boaz Barak · Preetum Nakkiran -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Local Causal Discovery for Estimating Causal Effects »
Shantanu Gupta · David Childers · Zachary Lipton -
2022 : On the Maximum Hessian Eigenvalue and Generalization »
Simran Kaur · Jeremy M Cohen · Zachary Lipton -
2022 : Simran Kaur: On the Maximum Hessian Eigenvalue and Generalization »
Simran Kaur -
2022 : Panel on Technical Challenges Associated with Reliable Human Evaluations of Generative Models »
Long Ouyang · Tongshuang Wu · Zachary Lipton -
2022 Workshop: Human Evaluation of Generative Models »
Divyansh Kaushik · Jennifer Hsia · Jessica Huynh · Yonadav Shavit · Samuel Bowman · Ting-Hao Huang · Douwe Kiela · Zachary Lipton · Eric Michael Smith -
2022 : Disentangling the Mechanisms Behind Implicit Regularization in SGD »
Zachary Novack -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Unsupervised Learning under Latent Label Shift »
Manley Roberts · Pranav Mani · Saurabh Garg · Zachary Lipton -
2022 Poster: Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2021 Poster: Parametric Complexity Bounds for Approximating PDEs with Neural Networks »
Tanya Marwah · Zachary Lipton · Andrej Risteski -
2021 Poster: Mixture Proportion Estimation and PU Learning:A Modern Approach »
Saurabh Garg · Yifan Wu · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2020 : Contributed Talk 1: Fairness Under Partial Compliance »
Jessica Dai · Zachary Lipton -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2020 Poster: A Unified View of Label Shift Estimation »
Saurabh Garg · Yifan Wu · Sivaraman Balakrishnan · Zachary Lipton -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift »
Stephan Rabanser · Stephan Günnemann · Zachary Lipton -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2018 : Invited Talk 1 »
Zachary Lipton -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Zachary Lipton »
Zachary Lipton -
2018 Poster: Does mitigating ML's impact disparity require treatment disparity? »
Zachary Lipton · Julian McAuley · Alexandra Chouldechova