Timezone: »
Molecular dynamics (MD) simulations describe the mechanical behaviors of molecular systems through empirical approximations of interatomic potentials. Machine learning-based approaches can improve such potentials with better transferability and generalization. Among them, graph neural networks have prevailed as they incorporate the graph structure prior while learning the interatomic interactions. Nevertheless, the simple design choices and heuristics in devising graph neural networks make them lack an explicitly interpretable component to identify the true physical interactions within the underlying system. On the other extreme, physical models can give a rather comprehensive description of a system but are hard to specify. Causal modeling lies in between these two extremes, and can provide us with more modeling flexibility. In this paper, we propose a structural causal molecular dynamics model (SCMD), the first causality-based framework to model interatomic and dynamical interactions in molecular systems by inferring causal relationships among atoms from observational data. Specifically, we leverage the structural causal model (SCM) to model the interaction system of MD. To infer the SCM, we construct the graph in SCM as the dynamic Bayesian network (DBN), which is learned by a sequential generative model named SC-VAE. In the SC-VAE, the encoder and decoder infer the causal structure and temporal dynamics. All components are learned in an end-to-end fashion, and the DBN is learned in an unsupervised way. Furthermore, by concerning the underlying data generation process, inducing the causal structure and temporal dynamics of the system, one can enjoy a robust and flexible MD simulation model to explicitly capture the long-range and time-dependent movement dynamics. We demonstrate the efficacy of SCMD through empirical validations on the complex molecular system (i.e., single-chain coarse-grained polymers in implicit solvent) for long-duration simulation and dynamical property prediction.
Author Information
Qi Liu (City University of Hong Kong)
Yuanqi Du (Cornell University)
Fan Feng (City University of Hong Kong)
Qiwei Ye (Microsoft Research)
Jie Fu (University of Montreal)
More from the Same Authors
-
2021 Spotlight: Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning »
Hanzhe Hu · Fangyun Wei · Han Hu · Qiwei Ye · Jinshi Cui · Liwei Wang -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2022 Poster: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : Xtal2DoS: Attention-based Crystal to Sequence Learning for Density of States Prediction »
Junwen Bai · Yuanqi Du · Yingheng Wang · Shufeng Kong · John Gregoire · Carla Gomes -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2022 Workshop: I Can’t Believe It’s Not Better: Understanding Deep Learning Through Empirical Falsification »
Arno Blaas · Sahra Ghalebikesabi · Javier Antorán · Fan Feng · Melanie F. Pradier · Ian Mason · David Rohde -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Bidirectional Learning for Offline Infinite-width Model-based Optimization »
Can Chen · Yingxueff Zhang · Jie Fu · Xue (Steve) Liu · Mark Coates -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Multi-objective Deep Data Generation with Correlated Property Control »
Shiyu Wang · Xiaojie Guo · Xuanyang Lin · Bo Pan · Yuanqi Du · Yinkai Wang · Yanfang Ye · Ashley Petersen · Austin Leitgeb · Saleh Alkhalifa · Kevin Minbiole · William M. Wuest · Amarda Shehu · Liang Zhao -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning »
Hanzhe Hu · Fangyun Wei · Han Hu · Qiwei Ye · Jinshi Cui · Liwei Wang -
2017 Poster: LightGBM: A Highly Efficient Gradient Boosting Decision Tree »
Guolin Ke · Qi Meng · Thomas Finley · Taifeng Wang · Wei Chen · Weidong Ma · Qiwei Ye · Tie-Yan Liu -
2016 Poster: A Communication-Efficient Parallel Algorithm for Decision Tree »
Qi Meng · Guolin Ke · Taifeng Wang · Wei Chen · Qiwei Ye · Zhi-Ming Ma · Tie-Yan Liu