Timezone: »
PropertyDAG: Multi-objective Bayesian optimization of partially ordered, mixed-variable properties for biological sequence design
Ji Won Park · Samuel Stanton · Saeed Saremi · Andrew Watkins · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Richard Bonneau
Event URL: https://openreview.net/forum?id=GN2jsoQFLhi »
Bayesian optimization offers a sample-efficient framework for navigating the exploration-exploitation trade-off in the vast design space of biological sequences. Whereas it is possible to optimize the various properties of interest jointly using a multi-objective acquisition function, such as the expected hypervolume improvement (EHVI), this approach does not account for objectives with hierarchical structure. We consider a common use case where some regions of the Pareto frontier are prioritized over others according to a specified $\textit{partial ordering}$ in the objectives. For instance, when designing antibodies, we would like to maximize the binding affinity to a target antigen only if can be expressed in live cell culture---modeling the experimental dependency in which affinity can only be measured for antibodies that can be expressed and thus produced in viable quantities. In general, we may want to confer a partial ordering to the properties such that each property is optimized conditioned on its parent properties satisfying some feasibility condition. To this end, we present PropertyDAG, a framework that operates on top of the traditional multi-objective BO to impose a desired partial ordering on the objectives, e.g. expression $\rightarrow$ affinity. We demonstrate its performance over multiple simulated active learning iterations on a penicillin production task, toy numerical problem, and a real-world antibody design task.
Bayesian optimization offers a sample-efficient framework for navigating the exploration-exploitation trade-off in the vast design space of biological sequences. Whereas it is possible to optimize the various properties of interest jointly using a multi-objective acquisition function, such as the expected hypervolume improvement (EHVI), this approach does not account for objectives with hierarchical structure. We consider a common use case where some regions of the Pareto frontier are prioritized over others according to a specified $\textit{partial ordering}$ in the objectives. For instance, when designing antibodies, we would like to maximize the binding affinity to a target antigen only if can be expressed in live cell culture---modeling the experimental dependency in which affinity can only be measured for antibodies that can be expressed and thus produced in viable quantities. In general, we may want to confer a partial ordering to the properties such that each property is optimized conditioned on its parent properties satisfying some feasibility condition. To this end, we present PropertyDAG, a framework that operates on top of the traditional multi-objective BO to impose a desired partial ordering on the objectives, e.g. expression $\rightarrow$ affinity. We demonstrate its performance over multiple simulated active learning iterations on a penicillin production task, toy numerical problem, and a real-world antibody design task.
Author Information
Ji Won Park (Prescient Design, Genentech/Roche)
Samuel Stanton (Prescient Design, Genentech)
ML Scientist at Genentech Early Research and Development (gRED). Building ML systems for scientific discovery in biotech.
Saeed Saremi (NNAISENSE)
Andrew Watkins (Prescient Design, Genentech)
Stephen Ra (Prescient Design / Genentech)
Vladimir Gligorijevic (Prescient Design/Genentech)
Kyunghyun Cho (Genentech / NYU)
Kyunghyun Cho is an associate professor of computer science and data science at New York University and a research scientist at Facebook AI Research. He was a postdoctoral fellow at the Université de Montréal until summer 2015 under the supervision of Prof. Yoshua Bengio, and received PhD and MSc degrees from Aalto University early 2014 under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
Richard Bonneau (New York University)
More from the Same Authors
-
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 : KLUE: Korean Language Understanding Evaluation »
Sungjoon Park · Jihyung Moon · Sungdong Kim · Won Ik Cho · Ji Yoon Han · Jangwon Park · Chisung Song · Junseong Kim · Youngsook Song · Taehwan Oh · Joohong Lee · Juhyun Oh · Sungwon Lyu · Younghoon Jeong · Inkwon Lee · Sangwoo Seo · Dongjun Lee · Hyunwoo Kim · Myeonghwa Lee · Seongbo Jang · Seungwon Do · Sunkyoung Kim · Kyungtae Lim · Jongwon Lee · Kyumin Park · Jamin Shin · Seonghyun Kim · Lucy Park · Alice Oh · Jung-Woo Ha · Kyunghyun Cho -
2021 : Robust Reinforcement Learning for Shifting Dynamics During Deployment »
Samuel Stanton · Rasool Fakoor · Jonas Mueller · Andrew Gordon Wilson · Alexander Smola -
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2022 : Automated Protein Function Description for Novel Class Discovery »
Meet Barot · Vladimir Gligorijevic · Richard Bonneau · Kyunghyun Cho -
2022 : A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences »
Nataša Tagasovska · Nathan Frey · Andreas Loukas · Isidro Hotzel · Julien Lafrance-Vanasse · Ryan Kelly · Yan Wu · Arvind Rajpal · Richard Bonneau · Kyunghyun Cho · Stephen Ra · Vladimir Gligorijevic -
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 : Mitigating input-causing confounding in multimodal learning via the backdoor adjustment »
Taro Makino · Krzysztof Geras · Kyunghyun Cho -
2022 : Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling »
Romain Lopez · Nataša Tagasovska · Stephen Ra · Kyunghyun Cho · Jonathan Pritchard · Aviv Regev -
2022 : Keynote - Rich Bonneau »
Richard Bonneau -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 Workshop: Robustness in Sequence Modeling »
Nathan Ng · Haoran Zhang · Vinith Suriyakumar · Chantal Shaib · Kyunghyun Cho · Yixuan Li · Alice Oh · Marzyeh Ghassemi -
2022 Poster: Generative multitask learning mitigates target-causing confounding »
Taro Makino · Krzysztof Geras · Kyunghyun Cho -
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2021 : NaturalProofs: Mathematical Theorem Proving in Natural Language »
Sean Welleck · Jiacheng Liu · Ronan Le Bras · Hanna Hajishirzi · Yejin Choi · Kyunghyun Cho -
2021 Poster: True Few-Shot Learning with Language Models »
Ethan Perez · Douwe Kiela · Kyunghyun Cho -
2021 Poster: Does Knowledge Distillation Really Work? »
Samuel Stanton · Pavel Izmailov · Polina Kirichenko · Alexander Alemi · Andrew Wilson -
2021 Poster: Conditioning Sparse Variational Gaussian Processes for Online Decision-making »
Wesley Maddox · Samuel Stanton · Andrew Wilson -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Workshop: Context and Compositionality in Biological and Artificial Neural Systems »
Javier Turek · Shailee Jain · Alexander Huth · Leila Wehbe · Emma Strubell · Alan Yuille · Tal Linzen · Christopher Honey · Kyunghyun Cho -
2019 : Cell »
Anne Carpenter · Jian Zhou · Maria Chikina · Alexander Tong · Ben Lengerich · Aly Abdelkareem · Gokcen Eraslan · Stephen Ra · Daniel Burkhardt · Frederick A Matsen IV · Alan Moses · Zhenghao Chen · Marzieh Haghighi · Alex Lu · Geoffrey Schau · Jeff Nivala · Miriam Shiffman · Hannes Harbrecht · Levi Masengo Wa Umba · Joshua Weinstein -
2019 Poster: Can Unconditional Language Models Recover Arbitrary Sentences? »
Nishant Subramani · Samuel Bowman · Kyunghyun Cho -
2019 Tutorial: Imitation Learning and its Application to Natural Language Generation »
Kyunghyun Cho · Hal Daumé III -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang -
2016 Poster: End-to-End Goal-Driven Web Navigation »
Rodrigo Nogueira · Kyunghyun Cho -
2016 Poster: Iterative Refinement of the Approximate Posterior for Directed Belief Networks »
R Devon Hjelm · Russ Salakhutdinov · Kyunghyun Cho · Nebojsa Jojic · Vince Calhoun · Junyoung Chung -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Spotlight: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio