Timezone: »
Symbolic regression is the process of finding an analytical expression that fits experimental data with the least amount of operators, variables and constants symbols. Given the huge combinatorial space of possible expressions, evolutionary algorithms struggle to find expressions that meets these criteria in a reasonable amount of time. To efficiently reduce the search space, neural symbolic regression algorithms have recently been proposed for their ability to identify patterns in the data and output analytical expressions in a single forward-pass. However, these new approaches to symbolic regression do not allow for the direct encoding of user-defined prior knowledge, a common scenario in natural sciences and engineering. In this work, we propose the first neural symbolic regression method that allows users to explicitly bias prediction towards expressions that satisfy a set of assumptions on the expected structure of the ground-truth expression. Our experiments show that our conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while achieving control over the predicted expression structure.
Author Information
Luca Biggio (ETH Zürich)
Tommaso Bendinelli (CSEM)
Pierre-alexandre Kamienny (Meta)
More from the Same Authors
-
2020 : Poster #12 »
Luca Biggio -
2020 : Uncertainty-aware Remaining Useful Life predictors »
Luca Biggio · Manuel Arias Chao · Olga Fink -
2020 : Session A, Poster 27: A Seq2Seq Approach To Symbolic Regression »
Tommaso Bendinelli -
2021 : Differentiable Strong Lensing for Complex Lens Modelling »
Luca Biggio -
2022 : Symbolic-Model-Based Reinforcement Learning »
Pierre-alexandre Kamienny · Sylvain Lamprier -
2022 : Fast kinematics modeling for conjunction with lens image modeling »
Matthew Gomer · Luca Biggio · Sebastian Ertl · Han Wang · Aymeric Galan · Lyne Van de Vyvere · Dominique Sluse · Georgios Vernardos · Sherry Suyu -
2022 : Cosmology from Galaxy Redshift Surveys with PointNet »
Sotiris Anagnostidis · Arne Thomsen · Alexandre Refregier · Tomasz Kacprzak · Luca Biggio · Thomas Hofmann · Tilman Tröster -
2022 : Symbolic-Model-Based Reinforcement Learning »
Pierre-alexandre Kamienny · Sylvain Lamprier -
2023 Poster: Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers »
Sotiris Anagnostidis · Dario Pavllo · Luca Biggio · Lorenzo Noci · Aurelien Lucchi · Thomas Hofmann -
2022 Poster: End-to-end Symbolic Regression with Transformers »
Pierre-alexandre Kamienny · Stéphane d'Ascoli · Guillaume Lample · Francois Charton -
2022 Poster: Signal Propagation in Transformers: Theoretical Perspectives and the Role of Rank Collapse »
Lorenzo Noci · Sotiris Anagnostidis · Luca Biggio · Antonio Orvieto · Sidak Pal Singh · Aurelien Lucchi -
2021 : Empirics on the expressiveness of Randomized Signature »
Enea Monzio Compagnoni · Luca Biggio · Antonio Orvieto -
2020 : Poster Session A: 3:00 AM - 4:30 AM PST »
Taras Khakhulin · Ravichandra Addanki · Jinhwi Lee · Jungtaek Kim · Piotr Januszewski · Konrad Czechowski · Francesco Landolfi · Lovro Vrček · Oren Neumann · Claudius Gros · Betty Fabre · Lukas Faber · Lucas Anquetil · Alberto Franzin · Tommaso Bendinelli · Sergey Bartunov