Timezone: »
Recommender systems are widely used in industry to improve user experience. Despite great success, they have recently been criticized for collecting private user data. Federated Learning (FL) is a new paradigm for learning on distributed data without direct data sharing. Therefore, Federated Recommender (FedRec) systems are proposed to mitigate privacy concerns to non-distributed recommender systems. However, FedRec systems have a performance gap to its non-distributed counterpart. The main reason is that local clients have an incomplete user-item interaction graph, thus FedRec systems cannot utilize indirect user-item interactions well. In this paper, we propose the Federated Graph Recommender System (FedGRec) to mitigate this gap. Our FedGRec system can effectively exploit the indirect user-item interactions. More precisely, in our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions and are used as a proxy of missing interaction graph during local training. We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph; the experimental results show superior performance of our system compared to various baselines.
Author Information
Junyi Li (University of Pittsburgh)
Heng Huang (University of Pittsburgh)
More from the Same Authors
-
2022 : Cooperation or Competition: Avoiding Player Domination for Multi-target Robustness by Adaptive Budgets »
Yimu Wang · Dinghuai Zhang · Yihan Wu · Heng Huang · Hongyang Zhang -
2022 Poster: MetricFormer: A Unified Perspective of Correlation Exploring in Similarity Learning »
Jiexi Yan · Erkun Yang · Cheng Deng · Heng Huang -
2022 Poster: Enhanced Bilevel Optimization via Bregman Distance »
Feihu Huang · Junyi Li · Shangqian Gao · Heng Huang -
2021 Poster: Optimal Underdamped Langevin MCMC Method »
Zhengmian Hu · Feihu Huang · Heng Huang -
2021 Poster: Fast Training Method for Stochastic Compositional Optimization Problems »
Hongchang Gao · Heng Huang -
2021 Poster: SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients »
Feihu Huang · Junyi Li · Heng Huang -
2021 Poster: Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems »
Feihu Huang · Xidong Wu · Heng Huang -
2021 Poster: A Faster Decentralized Algorithm for Nonconvex Minimax Problems »
Wenhan Xian · Feihu Huang · Yanfu Zhang · Heng Huang -
2019 Poster: Curvilinear Distance Metric Learning »
Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang -
2018 Poster: Bilevel Distance Metric Learning for Robust Image Recognition »
Jie Xu · Lei Luo · Cheng Deng · Heng Huang -
2018 Poster: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2018 Spotlight: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2017 Poster: Group Sparse Additive Machine »
Hong Chen · Xiaoqian Wang · Cheng Deng · Heng Huang -
2017 Poster: Regularized Modal Regression with Applications in Cognitive Impairment Prediction »
Xiaoqian Wang · Hong Chen · Weidong Cai · Dinggang Shen · Heng Huang -
2017 Poster: Learning A Structured Optimal Bipartite Graph for Co-Clustering »
Feiping Nie · Xiaoqian Wang · Cheng Deng · Heng Huang