Timezone: »
Decentralized Learning with Random Walks and Communication-Efficient Adaptive Optimization
Aleksei Triastcyn · Matthias Reisser · Christos Louizos
Event URL: https://openreview.net/forum?id=QwL8ZGl_QGG »
We tackle the problem of federated learning (FL) in a peer-to-peer fashion without a central server. While prior work mainly considered gossip-style protocols for learning, our solution is based on random walks. This allows to communicate only to a single peer at a time, thereby reducing the total communication and enabling asynchronous execution. To improve convergence and reduce the need for extensive tuning, we consider an adaptive optimization method -- Adam. Two extensions reduce its communication costs: state compression and multiple local updates on each client. We theoretically analyse the convergence behaviour of the proposed algorithm and its modifications in the non-convex setting. We show that our method can achieve performance comparable to centralized FL without communication overhead. Empirical results are reported on a variety of tasks (vision, text), neural network architectures and large-scale federations (up to $\sim342$k clients).
We tackle the problem of federated learning (FL) in a peer-to-peer fashion without a central server. While prior work mainly considered gossip-style protocols for learning, our solution is based on random walks. This allows to communicate only to a single peer at a time, thereby reducing the total communication and enabling asynchronous execution. To improve convergence and reduce the need for extensive tuning, we consider an adaptive optimization method -- Adam. Two extensions reduce its communication costs: state compression and multiple local updates on each client. We theoretically analyse the convergence behaviour of the proposed algorithm and its modifications in the non-convex setting. We show that our method can achieve performance comparable to centralized FL without communication overhead. Empirical results are reported on a variety of tasks (vision, text), neural network architectures and large-scale federations (up to $\sim342$k clients).
Author Information
Aleksei Triastcyn (Qualcomm Inc, QualComm)
Matthias Reisser (Qualcomm AI Research)
Christos Louizos (Qualcomm AI Research)
More from the Same Authors
-
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2020 Poster: Bayesian Bits: Unifying Quantization and Pruning »
Mart van Baalen · Christos Louizos · Markus Nagel · Rana Ali Amjad · Ying Wang · Tijmen Blankevoort · Max Welling -
2019 Poster: The Functional Neural Process »
Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling