Timezone: »
Cross-device Federated Learning is an increasingly popular machine learning setting to train a model by leveraging a large population of client devices with high privacy and security guarantees. However, communication efficiency remains a major bottleneck when scaling federated learning to production environments, particularly due to bandwidth constraints during uplink communication. In this paper, we formalize and address the problem of compressing client-to-server model updates under the Secure Aggregation primitive, a core component of Federated Learning pipelines that allows the server to aggregate the client updates without accessing them individually. In particular, we adapt standard scalar quantization and pruning methods to Secure Aggregation and propose Secure Indexing, a variant of Secure Aggregation that supports quantization for extreme compression. We establish state-of-the-art results on LEAF benchmarks in a secure Federated Learning setup with up to 40x compression in uplink communication and no meaningful loss in utility compared to uncompressed baselines.
Author Information
Karthik Prasad (Facebook AI)
Sayan Ghosh (University of Southern California)
Graham Cormode (Meta AI)
Ilya Mironov (Facebook / Meta)
Ashkan Yousefpour (Meta AI)
Pierre STOCK (Meta AI)
More from the Same Authors
-
2021 : Opacus: User-Friendly Differential Privacy Library in PyTorch »
Ashkan Yousefpour · Igor Shilov · Alexandre Sablayrolles · Karthik Prasad · Mani Malek Esmaeili · John Nguyen · Sayan Ghosh · Akash Bharadwaj · Jessica Zhao · Graham Cormode · Ilya Mironov -
2021 : Sample-and-threshold differential privacy: Histograms and applications »
Graham Cormode -
2022 : The Interpolated MVU Mechanism For Communication-efficient Private Federated Learning »
Chuan Guo · Kamalika Chaudhuri · Pierre STOCK · Mike Rabbat -
2022 : Panel on Privacy and Security in Machine Learning Systems »
Graham Cormode · Borja Balle · Yu-Xiang Wang · Alejandro Saucedo · Neil Lawrence -
2022 : Taking federated analytics from theory to practice »
Graham Cormode · Alessandra Tosi -
2022 : Taking federated analytics from theory to practice »
Graham Cormode -
2021 Poster: Antipodes of Label Differential Privacy: PATE and ALIBI »
Mani Malek Esmaeili · Ilya Mironov · Karthik Prasad · Igor Shilov · Florian Tramer