Timezone: »
This paper is a technical overview of our recent work on reinforcement learning for controlling commercial cooling systems. Building on previous work on cooling data centers more efficiently, we recently conducted two live experiments in partnership with a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
Author Information
Jerry Luo (DeepMind)
Cosmin Paduraru (DeepMind)
Octavian Voicu (DeepMind)
Yuri Chervonyi (Google/Deepmind)
Scott Munns (Trane Technologies)
Jerry Li (Deepmind)
Industrial researcher specializes in Generative models, style transfer, and RL.
Crystal Qian (DeepMind)
Praneet Dutta (Google)
Daniel Mankowitz (DeepMind)
Jared Quincy Davis (DeepMind | Stanford)
Ningjia Wu (Google)
Xingwei Yang (Google)
Chu-Ming Chang (Google)
Ted Li (Google)
Rob Rose (Google)
Mingyan Fan (Google)
Hootan Nakhost (Google)
Tinglin Liu (Google)
Deeni Fatiha (DeepMind)
Neil Satra (Google)
Juliet Rothenberg (DeepMind)
Molly Carlin (DeepMind)
Satish Tallapaka (Google)
Sims Witherspoon (DeepMind)
David Parish (Google)
Peter Dolan (Waymo)
Over a decade in machine learning at Google, focusing on applying Recommender systems to News and TV content and large system optimization, and building and deploying production ML infrastructure.
Chenyu Zhao (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Controlling Commercial Cooling Systems Using Reinforcement Learning »
Dates n/a. Room
More from the Same Authors
-
2021 : Importance of Representation Learning for Off-Policy Fitted Q-Evaluation »
Xian Wu · Nevena Lazic · Dong Yin · Cosmin Paduraru -
2022 : Semi-analytical Industrial Cooling System Model for Reinforcement Learning »
Yuri Chervonyi · Praneet Dutta -
2022 : Semi-analytical Industrial Cooling System Model for Reinforcement Learning »
Yuri Chervonyi · Praneet Dutta -
2022 : Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning »
William Wong · Praneet Dutta · Octavian Voicu · Yuri Chervonyi · Cosmin Paduraru · Jerry Luo -
2022 : Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning »
William Wong · Praneet Dutta · Octavian Voicu · Yuri Chervonyi · Cosmin Paduraru · Jerry Luo -
2021 Poster: Sub-Linear Memory: How to Make Performers SLiM »
Valerii Likhosherstov · Krzysztof Choromanski · Jared Quincy Davis · Xingyou Song · Adrian Weller -
2021 Poster: Active Offline Policy Selection »
Ksenia Konyushova · Yutian Chen · Thomas Paine · Caglar Gulcehre · Cosmin Paduraru · Daniel Mankowitz · Misha Denil · Nando de Freitas -
2020 : Mini-panel discussion 1 - Bridging the gap between theory and practice »
Aviv Tamar · Emma Brunskill · Jost Tobias Springenberg · Omer Gottesman · Daniel Mankowitz -
2020 Workshop: The Challenges of Real World Reinforcement Learning »
Daniel Mankowitz · Gabriel Dulac-Arnold · Shie Mannor · Omer Gottesman · Anusha Nagabandi · Doina Precup · Timothy A Mann · Gabriel Dulac-Arnold -
2020 : Introduction and Overview »
Daniel Mankowitz · Gabriel Dulac-Arnold -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik · Chun-Liang Li · Jinsung Yoon · Rajarishi Sinha · Arkady Epshteyn · Long Le · Vikas Menon · Shashank Singh · Leyou Zhang · Martin Nikoltchev · Yash Sonthalia · Hootan Nakhost · Elli Kanal · Tomas Pfister -
2020 Spotlight: Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik · Chun-Liang Li · Jinsung Yoon · Rajarishi Sinha · Arkady Epshteyn · Long Le · Vikas Menon · Shashank Singh · Leyou Zhang · Martin Nikoltchev · Yash Sonthalia · Hootan Nakhost · Elli Kanal · Tomas Pfister