Timezone: »
Parity in predictive performance is neither necessary nor sufficient for fairness
Justin Engelmann · Miguel Bernabeu · Amos Storkey
TL;DR: Parity in Predictive Performance (PPP) holds that a machine learning model is fair if and only if its predictive performance (by some measure) is (approximately) equal across groups of interest. We argue that this assumes that groups are equally difficult, which is unlikely to hold in practice. Absent this assumption, a model could be fair but not satisfy PPP, or be unfair yet satisfy PPP. Thus, PPP is neither necessary nor sufficient for fairness. We propose a new definition of fairness, Relative Realised PPP (R2P3), to account for these situations.
Author Information
Justin Engelmann (University of Edinburgh)
Miguel Bernabeu (University of Edinburgh)
Amos Storkey (University of Edinburgh)
More from the Same Authors
-
2021 : Hamiltonian prior to Disentangle Content and Motion in Image Sequences »
Asif Khan · Amos Storkey -
2022 : Deep Class-Conditional Gaussians for Continual Learning »
Thomas Lee · Amos Storkey -
2022 Poster: Hamiltonian Latent Operators for content and motion disentanglement in image sequences »
Asif Khan · Amos Storkey -
2021 Poster: Gradient-based Hyperparameter Optimization Over Long Horizons »
Paul Micaelli · Amos Storkey -
2020 Poster: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Spotlight: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Poster: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2020 Spotlight: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2019 Poster: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Spotlight: Zero-shot Knowledge Transfer via Adversarial Belief Matching »
Paul Micaelli · Amos Storkey -
2019 Poster: Learning to Learn By Self-Critique »
Antreas Antoniou · Amos Storkey -
2018 Poster: Moonshine: Distilling with Cheap Convolutions »
Elliot Crowley · Gavia Gray · Amos Storkey -
2015 Poster: Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling »
Xiaocheng Shang · Zhanxing Zhu · Benedict Leimkuhler · Amos Storkey -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2012 Poster: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Spotlight: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Poster: The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes »
Simon Lyons · Amos Storkey · Simo Sarkka -
2011 Poster: Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability »
David Reichert · Peggy Series · Amos Storkey -
2011 Spotlight: Neuronal Adaptation for Sampling-Based Probabilistic Inference in Perceptual Bistability »
David Reichert · Peggy Series · Amos Storkey -
2010 Poster: Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model »
David Reichert · Peggy Series · Amos Storkey -
2010 Poster: Sparse Instrumental Variables (SPIV) for Genome-Wide Studies »
Felix V Agakov · Paul McKeigue · Jon Krohn · Amos Storkey -
2007 Poster: Continuous Time Particle Filtering for fMRI »
Lawrence Murray · Amos Storkey -
2007 Poster: Modelling motion primitives and their timing in biologically executed movements »
Ben H Williams · Marc Toussaint · Amos Storkey -
2006 Poster: Learning Structural Equation Models for fMRI »
Amos Storkey · Enrico Simonotto · Heather Whalley · Stephen Lawrie · Lawrence Murray · David McGonigle -
2006 Poster: Mixture Regression for Covariate Shift »
Amos Storkey · Masashi Sugiyama