Timezone: »
In this work, we theoretically study the impact of differential privacy on fairness in binary classification. We prove that, given a class of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the model. This result is a consequence of a more general statement on the probability that a decision function makes a negative prediction conditioned on an arbitrary event (such as membership to a sensitive group), which may be of independent interest. We use the aforementioned Lipschitz property to prove a high probability bound showing that, given enough examples, the fairness level of private models is close to the one of their non-private counterparts.
Author Information
Paul Mangold (Inria Lille)
Michaël Perrot (INRIA)
Marc Tommasi (INRIA)
Aurélien Bellet (INRIA)
More from the Same Authors
-
2020 : Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties »
Aurélien Bellet -
2020 : Privacy Amplification by Decentralization »
Aurélien Bellet -
2022 : Refined Convergence and Topology Learning for Decentralized Optimization with Heterogeneous Data »
Batiste Le bars · Aurélien Bellet · Marc Tommasi · Erick Lavoie · Anne-marie Kermarrec -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging »
Edwige Cyffers · Mathieu Even · Aurélien Bellet · Laurent Massoulié -
2021 Poster: Federated Multi-Task Learning under a Mixture of Distributions »
Othmane Marfoq · Giovanni Neglia · Aurélien Bellet · Laetitia Kameni · Richard Vidal -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Near-Optimal Comparison Based Clustering »
Michaël Perrot · Pascal Esser · Debarghya Ghoshdastidar -
2020 Session: Orals & Spotlights Track 10: Social/Privacy »
Yanan Sui · Aurélien Bellet -
2019 Poster: Foundations of Comparison-Based Hierarchical Clustering »
Debarghya Ghoshdastidar · Michaël Perrot · Ulrike von Luxburg -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 : Aurélien Bellet »
Aurélien Bellet -
2017 : Personalized and Private Peer-to-Peer Machine Learning »
Aurélien Bellet · Rachid Guerraoui · Marc Tommasi -
2016 Workshop: Private Multi-Party Machine Learning »
Borja Balle · Aurélien Bellet · David Evans · Adrià Gascón -
2016 Poster: On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability »
Guillaume Papa · Aurélien Bellet · Stephan Clémençon -
2016 Poster: Mapping Estimation for Discrete Optimal Transport »
Michaël Perrot · Nicolas Courty · Rémi Flamary · Amaury Habrard -
2015 Poster: SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk »
Guillaume Papa · Stéphan Clémençon · Aurélien Bellet -
2015 Poster: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Spotlight: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Poster: Regressive Virtual Metric Learning »
Michaël Perrot · Amaury Habrard -
2012 Poster: Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling »
Antonino Freno · Mikaela Keller · Marc Tommasi