Timezone: »
Avoidant/Restrictive Food Intake Disorder (ARFID), a new diagnosis in the DSM-5, is an eating disorder that can emerge in early childhood, threatens optimal physical growth and social-emotional development, and has been reported to persist, for some, well into adolescence or adulthood. Food selectivity more broadly has been reported to be more elevated in families of lower income, while the accessibility and affordability of treatment for mental health patients in the underrepresented group are limited. Therefore, it is crucial to develop accessible, affordable, and effective therapies. We designed a unique clinical study that can be implemented at home, which provides patients with a framework to work towards overcoming the challenges associated with ARFID. During the intervention, participants are filmed and relevant facial information is collected, automatically analyzed with machine learning and computer vision, and delivered to medical experts to enhance the knowledge they use for clinical judgment. We automatically extract affect-related features right after the participants taste or smell a food they labeled as moderately challenging. We observed that facial action units activation provides interesting patterns helpful in understanding the patient’s experience throughout the food exposure treatment. This rich information enables quantification of the effectiveness of the currently investigated treatments and differentiation of patient-specific responses to them, potentially leading to scalable personalized medicine for ARFID.
Author Information
Young Kyung Kim (Duke University)
Juan Matias Di Martino (Duke University)
Julia Nicholas (University of Louisville)
Ilana Pilato (Duke University)
Alannah Rivera-Cancel (Duke University)
Julia Gianneschi (Duke University)
Jalisa Jackson (Duke University)
Ellen Mines (Duke School of Medicine)
Nancy Zucker
Guillermo Sapiro (Duke University)
More from the Same Authors
-
2021 : Federating for Learning Group Fair Models »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2021 : Distributionally Robust Group Backwards Compatibility »
Martin Bertran · Natalia Martinez · Guillermo Sapiro -
2021 : Complexity in Facial dynamics using Computer Vision as Behavioral Assessment for Autism Spectrum Disorder »
Pradeep Raj Krishnappa Babu · J. Matias Di Martino · Kimberley Carpenter · Steven Espinosa · geraldine Dawson · Guillermo Sapiro -
2022 : Improving Generalization with Physical Equations »
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen -
2022 : Federated Fairness without Access to Demographics »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2022 : A Large-Scale Observational Study of the Causal Effects of a Behavioral Health Nudge »
Achille Nazaret · Guillermo Sapiro -
2022 : Modeling Heart Rate Response to Exercise with Wearables Data »
Achille Nazaret · Sana Tonekaboni · Gregory Darnell · Shirley Ren · Guillermo Sapiro · Andrew Miller -
2020 : Lightning Talk 2: Pareto Robustness for Fairness Beyond Demographics »
Natalia Martinez · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2015 : Computational discussion: Challenges in analyzing large neuroimaging datasets »
Guillermo Sapiro -
2015 Poster: Discriminative Robust Transformation Learning »
Jiaji Huang · Qiang Qiu · Guillermo Sapiro · Robert Calderbank -
2013 Poster: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Spotlight: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Poster: Supervised Sparse Analysis and Synthesis Operators »
Pablo Sprechmann · Roee Litman · Tal Ben Yakar · Alexander M Bronstein · Guillermo Sapiro -
2012 Poster: Topology Constraints in Graphical Models »
Marcelo Fiori · Pablo Muse · Guillermo Sapiro -
2012 Poster: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery »
Ehsan Elhamifar · Guillermo Sapiro · René Vidal -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Larry Carin -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2006 Poster: Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds »
Gloria Haro · Gregory Randall · Guillermo Sapiro