Timezone: »
The Wasserstein GAN (WGAN) is a well-established model allowing for the generation of high-quality synthetic data approximating a given real dataset. We study TabFairGAN, a known tabular variation of WGAN in which a custom penalty term is added to the generator's loss, forcing it to produce fair data. Here we measure the fairness of synthetic data using demographic parity, i.e., the gap in the proportions of positive outcome between different sensitive groups. We reproduce some results from the paper and highlight empirically the fact that although the synthetic data achieves low demographic parity, a classification model trained on said data and evaluated on real data may still output predictions that achieve high demographic parity -- hence is unfair. In particular, we show empirically this gap holds for most parts spectrum of the fairness-accuracy tradeoff, besides the large-penalty case where the model mode collapses to the most frequent target outcome, and the low-penalty case where the data is not constrained to be fair.
Author Information
Yam Eitan (Fairgen)
Nathan Cavaglione (Imperial Valley College)
Michael Arbel (INRIA)
Samuel Cohen (University College London)
More from the Same Authors
-
2021 : Cross-Domain Imitation Learning via Optimal Transport »
Arnaud Fickinger · Samuel Cohen · Stuart Russell · Brandon Amos -
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : On Combining Expert Demonstrations in Imitation Learning via Optimal Transport »
ilana sebag · Samuel Cohen · Marc Deisenroth -
2021 : Sliced Multi-Marginal Optimal Transport »
Samuel Cohen · Alexander Terenin · Yannik Pitcan · Brandon Amos · Marc Deisenroth · Senanayak Sesh Kumar Karri -
2022 : Meta Optimal Transport »
Brandon Amos · Samuel Cohen · Giulia Luise · Ievgen Redko -
2022 : Optimal Transport for Offline Imitation Learning »
Yicheng Luo · zhengyao Jiang · Samuel Cohen · Edward Grefenstette · Marc Deisenroth -
2022 Poster: Non-Convex Bilevel Games with Critical Point Selection Maps »
Michael Arbel · Julien Mairal -
2021 Poster: KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support »
Pierre Glaser · Michael Arbel · Arthur Gretton -
2021 Poster: Tactical Optimism and Pessimism for Deep Reinforcement Learning »
Ted Moskovitz · Jack Parker-Holder · Aldo Pacchiano · Michael Arbel · Michael Jordan -
2020 Poster: A Non-Asymptotic Analysis for Stein Variational Gradient Descent »
Anna Korba · Adil Salim · Michael Arbel · Giulia Luise · Arthur Gretton -
2019 Poster: Maximum Mean Discrepancy Gradient Flow »
Michael Arbel · Anna Korba · Adil Salim · Arthur Gretton -
2018 Poster: On gradient regularizers for MMD GANs »
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton