Timezone: »
We propose a parametric forward model for single particle cryo-electron microscopy (cryo-EM), and employ stochastic variational inference to infer posterior distributions of the physically interpretable latent variables. Our novel cryo-EM forward model accounts for the biomolecular configuration (via spatial coordinates of pseudo-atoms, in contrast with traditional voxelized representations) the global 3D pose, the effect of the microscope (contrast transfer function's defocus parameter), and noise. To capture heterogeneity, we use the anisotropic network model (ANM), a Gaussian in the space of atomic coordinates. We perform experiments on synthetic data and show that the posterior of the scalar component along the lowest ANM mode and the angle of 2D in-plane pose can be jointly inferred with deep neural networks. We also demonstrate Fourier frequency marching in the simulation and likelihood during training, without retraining the neural networks that characterize the variational posterior.
Author Information
Geoffrey Woollard (University of British Columbia)
Geoff earned his BSc (Biophysics, 2011) and MSc (Genome Science and Technology, 2014) at the University of British Columbia. He worked as Associate Scientists for Cyclica and Structura Biotechnology, where he wrote software for structural biology applications, and did wet bench biochemistry and microscopy for single particle electron cryomicroscopy (cryo-EM) studies of a calcium ion channel at the University of Toronto. He is currently doing his PhD at the University of British Columbia, where he works on modelling and inference for cryo-EM.
Shayan Shekarforoush (University of Toronto)
Frank Wood (University of British Columbia)
Marcus Brubaker (York University)
Khanh Dao Duc (University of British Columbia)

Khanh Dao Duc received the B.S. degree in mathematics from the Ecole Normale Supérieure de Lyon, Lyon, France, in 2006, the M.S. degree in mathematics from Université Paris 6, Paris, France, in 2009, and the Ph.D. degree in applied mathematics from the Ecole Normale Supérieure, Paris, France, in 2013. From 2014 to 2015, and 2017 to 2019 he was a postdoctoral fellow at the University of California, Berkeley, CA, USA. From 2015 to 2017, he was a Simons postoctoral fellow with the University of Pennsylvania, Philadelphia, USA. He is currently an Assistant Professor of mathematics at the University of British Columbia, Vancouver, BC, Canada, where his research group focuses on developing mathematical and computational methods for various problems in structural, molecular and cell biology, and neuroscience.
More from the Same Authors
-
2021 : TITRATED: Learned Human Driving Behavior without Infractions via Amortized Inference »
Vasileios Lioutas · Adam Scibior · Frank Wood -
2022 Poster: Residual Multiplicative Filter Networks for Multiscale Reconstruction »
Shayan Shekarforoush · David Lindell · David Fleet · Marcus Brubaker -
2022 : 3D alignment of cryogenic electron microscopy density maps by minimizing their Wasserstein distance »
Aryan Tajmir Riahi · Geoffrey Woollard · Frederic Poitevin · Anne Condon · Khanh Dao Duc -
2022 : Visualizing DNA reaction trajectories with deep graph embedding approaches »
Chenwei Zhang · Anne Condon · Khanh Dao Duc -
2022 : Testing geometric representation hypotheses from simulated place cell recordings »
Thibault Niederhauser · Adam Lester · Nina Miolane · Khanh Dao Duc · Manu Madhav -
2023 Poster: A Diffusion-Model of Joint Interactive Navigation »
Matthew Niedoba · Jonathan Lavington · Yunpeng Liu · Vasileios Lioutas · Justice Sefas · Xiaoxuan Liang · Dylan Green · Setareh Dabiri · Berend Zwartsenberg · Adam Scibior · Frank Wood -
2022 Spotlight: Residual Multiplicative Filter Networks for Multiscale Reconstruction »
Shayan Shekarforoush · David Lindell · David Fleet · Marcus Brubaker -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Poster: BayesPCN: A Continually Learnable Predictive Coding Associative Memory »
Jinsoo Yoo · Frank Wood -
2022 Poster: Flexible Diffusion Modeling of Long Videos »
William Harvey · Saeid Naderiparizi · Vaden Masrani · Christian Weilbach · Frank Wood -
2021 Poster: Continuous Latent Process Flows »
Ruizhi Deng · Marcus Brubaker · Greg Mori · Andreas Lehrmann -
2020 Poster: Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective »
Vu Nguyen · Vaden Masrani · Rob Brekelmans · Michael A Osborne · Frank Wood -
2020 Poster: Wavelet Flow: Fast Training of High Resolution Normalizing Flows »
Jason Yu · Konstantinos Derpanis · Marcus Brubaker -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Poster: The Thermodynamic Variational Objective »
Vaden Masrani · Tuan Anh Le · Frank Wood -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Bayesian Distributed Stochastic Gradient Descent »
Michael Teng · Frank Wood