Timezone: »
Designing proteins to achieve specific functions often requires in silico modeling of their properties at high throughput scale and can significantly benefit from fast and accurate protein structure prediction. We introduce EquiFold, a new end-to-end differentiable, SE(3)-equivariant, all-atom protein structure prediction model. EquiFold uses a novel coarse-grained representation of protein structures that does not require multiple sequence alignments or protein language model embeddings, inputs that are commonly used in other state-of-the-art structure prediction models. Our method relies on geometrical structure representation and is substantially smaller than prior state-of-the-art models. In preliminary studies, EquiFold achieved comparable accuracy to AlphaFold but was orders of magnitude faster. The combination of high speed and accuracy make EquiFold suitable for a number of downstream tasks, including protein property prediction and design.
Author Information
Jae Hyeon Lee (Prescient / Genentech)
Payman Yadollahpour (Genentech)
Andrew Watkins (Prescient Design, Genentech)
Nathan Frey (Genentech)
Andrew Leaver-Fay (Genentech)
Stephen Ra (Prescient Design / Genentech)
Vladimir Gligorijevic (Prescient Design/Genentech)
Kyunghyun Cho (Genentech / NYU)
Aviv Regev (Genentech)
Richard Bonneau (Genentech)
Richard Bonneau is on leave from NYU and currently at Prescient Design.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Sat. Dec 3rd 07:25 -- 07:40 PM Room
More from the Same Authors
-
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2022 : Automated Protein Function Description for Novel Class Discovery »
Meet Barot · Vladimir Gligorijevic · Richard Bonneau · Kyunghyun Cho -
2022 : A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences »
Nataša Tagasovska · Nathan Frey · Andreas Loukas · Isidro Hotzel · Julien Lafrance-Vanasse · Ryan Kelly · Yan Wu · Arvind Rajpal · Richard Bonneau · Kyunghyun Cho · Stephen Ra · Vladimir Gligorijevic -
2022 : PropertyDAG: Multi-objective Bayesian optimization of partially ordered, mixed-variable properties for biological sequence design »
Ji Won Park · Samuel Stanton · Saeed Saremi · Andrew Watkins · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Richard Bonneau -
2022 : Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling »
Romain Lopez · Nataša Tagasovska · Stephen Ra · Kyunghyun Cho · Jonathan Pritchard · Aviv Regev -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Large-Scale Differentiable Causal Discovery of Factor Graphs »
Romain Lopez · Jan-Christian Huetter · Jonathan Pritchard · Aviv Regev -
2021 : Function-guided protein design by deep manifold sampling »
Vladimir Gligorijevic · Stephen Ra · Dan Berenberg · Richard Bonneau · Kyunghyun Cho -
2019 : Cell »
Anne Carpenter · Jian Zhou · Maria Chikina · Alexander Tong · Ben Lengerich · Aly Abdelkareem · Gokcen Eraslan · Stephen Ra · Daniel Burkhardt · Frederick A Matsen IV · Alan Moses · Zhenghao Chen · Marzieh Haghighi · Alex Lu · Geoffrey Schau · Jeff Nivala · Miriam Shiffman · Hannes Harbrecht · Levi Masengo Wa Umba · Joshua Weinstein