Timezone: »
NLP research has been focused on NER extraction and how to efficiently extract them from a sentence. However, generating relevant context of entities from a sentence has remained under-explored. In this work, we introduce the task Context-NER in which relevant context of an entity has to be generated. The extracted context may not be found exactly as a substring in the sentence. We also introduce the EDGAR10-Q dataset for the same, which is a corpus of 1,500 publicly traded companies. It is a manually created complex corpus and one of the largest in terms of number of sentences and entities (1 M and 2.8 M). We introduce a baseline approach that leverages phrase generation algorithms and uses the pre-trained BERT model to get 33% ROUGE-L score. We also do a one shot evaluation with GPT-3 and get 39% score, signifying the hardness and future scope of this task. We hope that addition of this dataset and our study will pave the way for further research in this domain.
Author Information
Himanshu Gupta (Arizona State University)
CS Grad Student @ ASU | Prev: AI Researcher @ American Express
Shreyas Verma (Georgia Institute of Technology)
Tarun Kumar (Birla Institute of Technology and Science, Pilani)
Swaroop Mishra (Arizona State University)
Tamanna Agrawal (American Express)
Amogh Badugu (Birla Institute of Technology & Science, Pilani)
Himanshu Bhatt (Amex)
More from the Same Authors
-
2022 : LILA: A Unified Benchmark for Mathematical Reasoning »
Swaroop Mishra · Matthew Finlayson · Pan Lu · Leonard Tang · Sean Welleck · Chitta Baral · Tanmay Rajpurohit · Oyvind Tafjord · Ashish Sabharwal · Peter Clark · Ashwin Kalyan -
2022 Workshop: MATH-AI: Toward Human-Level Mathematical Reasoning »
Pan Lu · Swaroop Mishra · Sean Welleck · Yuhuai Wu · Hannaneh Hajishirzi · Percy Liang -
2022 Poster: Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering »
Pan Lu · Swaroop Mishra · Tanglin Xia · Liang Qiu · Kai-Wei Chang · Song-Chun Zhu · Oyvind Tafjord · Peter Clark · Ashwin Kalyan -
2020 : VAIDA: An Educative Benchmark Creation Paradigm using Visual Analytics for Interactively Discouraging Artifacts (by Anjana Arunkumar, Swaroop Mishra, Bhavdeep Sachdeva, Chitta Baral and Chris Bryan) »
Anjana Arunkumar · Swaroop Mishra · Chitta Baral