Timezone: »
Recently, the pretrain-tuning paradigm in large-scale sequence models has made significant progress in Natural Language Processing and Computer Vision. However, such a paradigm is still hindered by intractable challenges in Reinforcement Learning (RL), including the lack of self-supervised large-scale pretraining methods based on offline data and efficient fine-tuning/prompt-tuning over unseen downstream tasks. In this work, we explore how prompts can help sequence-modeling-based offline Reinforcement Learning (offline-RL) algorithms. Firstly, we propose prompt tuning for offline RL, where a context vector sequence is concatenated with the input to guide the conditional generation. As such, we can pretrain a model on the offline dataset with supervised loss and learn a prompt to guide the policy to play the desired actions. Secondly, we extend the framework to the Meta-RL setting and propose Contextual Meta Transformer (CMT), which leverages the context among different tasks as the prompt to improve the performance on unseen tasks. We conduct extensive experiments across three different offline-RL settings: offline single-agent RL on the D4RL dataset, offline Meta-RL on the MuJoCo benchmark, and offline MARL on the SMAC benchmark; the results validate the strong performance, high computation efficiency, and generality of our methods.
Author Information
Runji Lin (Institute of automation, Chinese Academy of Sciences)

Runji Lin is a master's student at Institute of Automation, Chinese Academy of Sciences (CASIA). His research areas include reinforcement learning, game theory, and multi-agent system.
Ye Li (Nankai University)
Xidong Feng (University College London)
Zhaowei Zhang (Wuhan University)
XIAN HONG WU FUNG (Peking University)
Haifeng Zhang (Institute of automation, Chinese academy of science, Chinese Academy of Sciences)
Jun Wang (UCL)
Yali Du (King's College London)
Yaodong Yang (AIG)
More from the Same Authors
-
2021 : MHER: Model-based Hindsight Experience Replay »
Yang Rui · Meng Fang · Lei Han · Yali Du · Feng Luo · Xiu Li -
2022 Poster: Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning »
Runze Liu · Fengshuo Bai · Yali Du · Yaodong Yang -
2022 Poster: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Poster: M2N: Mesh Movement Networks for PDE Solvers »
Wenbin Song · Mingrui Zhang · Joseph G Wallwork · Junpeng Gao · Zheng Tian · Fanglei Sun · Matthew Piggott · Junqing Chen · Zuoqiang Shi · Xiang Chen · Jun Wang -
2022 Poster: Constrained Update Projection Approach to Safe Policy Optimization »
Long Yang · Jiaming Ji · Juntao Dai · Linrui Zhang · Binbin Zhou · Pengfei Li · Yaodong Yang · Gang Pan -
2022 Poster: A Unified Diversity Measure for Multiagent Reinforcement Learning »
Zongkai Liu · Chao Yu · Yaodong Yang · peng sun · Zifan Wu · Yuan Li -
2022 Poster: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 : TorchOpt: An Efficient library for Differentiable Optimization »
Jie Ren · Xidong Feng · Bo Liu · Xuehai Pan · Yao Fu · Luo Mai · Yaodong Yang -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Multiagent Q-learning with Sub-Team Coordination »
Wenhan Huang · Kai Li · Kun Shao · Tianze Zhou · Matthew Taylor · Jun Luo · Dongge Wang · Hangyu Mao · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Optimistic Tree Searches for Combinatorial Black-Box Optimization »
Cedric Malherbe · Antoine Grosnit · Rasul Tutunov · Haitham Bou Ammar · Jun Wang -
2022 Spotlight: Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning »
Yuanpei Chen · Tianhao Wu · Shengjie Wang · Xidong Feng · Jiechuan Jiang · Zongqing Lu · Stephen McAleer · Hao Dong · Song-Chun Zhu · Yaodong Yang -
2022 Poster: Optimistic Tree Searches for Combinatorial Black-Box Optimization »
Cedric Malherbe · Antoine Grosnit · Rasul Tutunov · Haitham Bou Ammar · Jun Wang -
2022 Poster: MATE: Benchmarking Multi-Agent Reinforcement Learning in Distributed Target Coverage Control »
Xuehai Pan · Mickel Liu · Fangwei Zhong · Yaodong Yang · Song-Chun Zhu · Yizhou Wang -
2022 Poster: Enhancing Safe Exploration Using Safety State Augmentation »
Aivar Sootla · Alexander Cowen-Rivers · Jun Wang · Haitham Bou Ammar -
2022 Poster: Multi-Agent Reinforcement Learning is a Sequence Modeling Problem »
Muning Wen · Jakub Kuba · Runji Lin · Weinan Zhang · Ying Wen · Jun Wang · Yaodong Yang -
2022 Poster: A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning »
Bo Liu · Xidong Feng · Jie Ren · Luo Mai · Rui Zhu · Haifeng Zhang · Jun Wang · Yaodong Yang -
2021 Poster: Settling the Variance of Multi-Agent Policy Gradients »
Jakub Grudzien Kuba · Muning Wen · Linghui Meng · shangding gu · Haifeng Zhang · David Mguni · Jun Wang · Yaodong Yang -
2021 Poster: Neural Auto-Curricula in Two-Player Zero-Sum Games »
Xidong Feng · Oliver Slumbers · Ziyu Wan · Bo Liu · Stephen McAleer · Ying Wen · Jun Wang · Yaodong Yang -
2020 Poster: Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games »
Yunqiu Xu · Meng Fang · Ling Chen · Yali Du · Joey Tianyi Zhou · Chengqi Zhang -
2019 Poster: Curriculum-guided Hindsight Experience Replay »
Meng Fang · Tianyi Zhou · Yali Du · Lei Han · Zhengyou Zhang -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2018 Poster: Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning »
Rui Luo · Jianhong Wang · Yaodong Yang · Jun WANG · Zhanxing Zhu -
2017 : Aligned AI Poster Session »
Amanda Askell · Rafal Muszynski · William Wang · Yaodong Yang · Quoc Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet · Candice Schumann · Anqi Liu · Peter Eckersley · Angelina Wang · William Saunders -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge