Timezone: »
Goal recognition (GR) allows the future behaviour of vehicles to be more accurately predicted. GR involves inferring the goals of other vehicles, such as a certain junction exit. In autonomous driving, vehicles can encounter many different scenarios and the environment is partially observable due to occlusions. We present a novel GR method named Goal Recognition with Interpretable Trees under Occlusion (OGRIT). We demonstrate that OGRIT can handle missing data due to occlusions and make inferences across multiple scenarios using the same learned decision trees, while still being fast, accurate, interpretable and verifiable. We also present the inDO and roundDO datasets of occluded regions used to evaluate OGRIT.
Author Information
Cillian Brewitt (University of Edinburgh)
Massimiliano Tamborski (University of Edinburgh)
Stefano Albrecht (University of Edinburgh)
More from the Same Authors
-
2021 : Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks »
Georgios Papoudakis · Filippos Christianos · Lukas Schäfer · Stefano Albrecht -
2021 : Robust On-Policy Data Collection for Data-Efficient Policy Evaluation »
Rujie Zhong · Josiah Hanna · Lukas Schäfer · Stefano Albrecht -
2022 : Enhancing Transfer of Reinforcement Learning Agents with Abstract Contextual Embeddings »
Guy Azran · Mohamad Hosein Danesh · Stefano Albrecht · Sarah Keren -
2022 : Sample Relationships through the Lens of Learning Dynamics with Label Information »
Shangmin Guo · Yi Ren · Stefano Albrecht · Kenny Smith -
2022 : Learning Representations for Reinforcement Learning with Hierarchical Forward Models »
Trevor McInroe · Lukas Schäfer · Stefano Albrecht -
2022 : Temporal Disentanglement of Representations for Improved Generalisation in Reinforcement Learning »
Mhairi Dunion · Trevor McInroe · Kevin Sebastian Luck · Josiah Hanna · Stefano Albrecht -
2023 Poster: Conditional Mutual Information for Disentangled Representations in Reinforcement Learning »
Mhairi Dunion · Trevor McInroe · Kevin Sebastian Luck · Josiah Hanna · Stefano Albrecht -
2022 Poster: Robust On-Policy Sampling for Data-Efficient Policy Evaluation in Reinforcement Learning »
Rujie Zhong · Duohan Zhang · Lukas Schäfer · Stefano Albrecht · Josiah Hanna -
2021 Poster: Agent Modelling under Partial Observability for Deep Reinforcement Learning »
Georgios Papoudakis · Filippos Christianos · Stefano Albrecht -
2020 Poster: Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning »
Filippos Christianos · Lukas Schäfer · Stefano Albrecht