Timezone: »
Electrodermal activity (EDA), usually measured as skin conductance, is a biosignal that contains valuable information for health monitoring. However, building machine learning models utilizing EDA data is challenging because EDA measurements tend to be noisy and sparsely labelled. To address this problem, we investigate applying contrastive learning to EDA. The EDA signal presents different challenges than the domains to which contrastive learning is usually applied (e.g., text and images). In particular, EDA is non-stationary and subject to specific kinds of noise. In this study, we focus on designing contrastive learning methods that are tailored to EDA data. We propose novel transformations of EDA signals to produce sets of positive examples within a contrastive learning framework. We evaluate our proposed approach on the downstream task of stress detection. We find that the embeddings learned with our contrastive pre-training approach outperform baselines, including fully supervised methods.
Author Information
Katie Matton (MIT)
PhD student working on machine learning and causality, with a focus on mental health applications
Robert Lewis (Massachusetts Institute of Technology)
John Guttag (Massachusetts Institute of Technology)
Rosalind Picard (MIT Media Lab)
More from the Same Authors
-
2021 : Sequential Decision Making with Limited Resources »
Hallee Wong · Maggie Makar · Aniruddh Raghu · John Guttag -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Conditional Contrastive Networks »
Emily Mu · John Guttag -
2022 : UniverSeg: Universal Medical Image Segmentation »
Victor Butoi · Jose Javier Gonzalez Ortiz · Tianyu Ma · John Guttag · Mert Sabuncu · Adrian Dalca -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2023 Poster: Scale-Space Hypernetworks for Efficient Biomedical Image Analysis »
Jose Javier Gonzalez Ortiz · John Guttag · Adrian Dalca -
2022 : Rosalind Picard »
Rosalind Picard -
2022 : At the Intersection of Conceptual Art and Deep Learning: The End of Signature »
Kathleen Lewis · Divya Shanmugam · Jose Javier Gonzalez Ortiz · Agnieszka Kurant · John Guttag -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2021 : Context in Automated Affect Recognition »
Matt Groh · Rosalind Picard -
2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu -
2019 Poster: Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems »
Asma Ghandeharioun · Judy Hanwen Shen · Natasha Jaques · Craig Ferguson · Noah Jones · Agata Lapedriza · Rosalind Picard -
2018 : Lunch »
Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard