Timezone: »
As input data distributions evolve, the predictive performance of machine learning models tends to deteriorate. In the past, predictive performance was considered the key indicator to monitor. However, explanation aspects have come to attention within the last years. In this work, we investigate how model predictive performance and model explanation characteristics are affected under distribution shifts and how these key indicators are related to each other for tabular data.We find that the modeling of explanation shifts can be a better indicator for the detection of predictive performance changes than state-of-the-art techniques based on representations of distribution shifts. We provide a mathematical analysis of different types of distribution shifts as well as synthetic experimental examples.
Author Information
Carlos Mougan (University of Southampton)
Klaus Broelemann (SCHUFA Holding AG)
Gjergji Kasneci (University of Tuebingen)
Thanassis Tiropanis (University of Southampton)
Steffen Staab (University of Stuttgart)
More from the Same Authors
-
2021 : CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms »
Martin Pawelczyk · Sascha Bielawski · Johan Van den Heuvel · Tobias Richter · Gjergji Kasneci -
2021 : A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines »
Vadim Borisov · Johannes Meier · Johan Van den Heuvel · Hamed Jalali · Gjergji Kasneci -
2021 : Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian Processes »
Hamed Jalali · Gjergji Kasneci -
2022 : Expert Selection in Distributed Gaussian Processes: A Multi-label Classification Approach »
Hamed Jalali · Gjergji Kasneci -
2022 : I Prefer not to Say – Operationalizing Fair and User-guided Data Minimization »
Tobias Leemann · Martin Pawelczyk · Christian Eberle · Gjergji Kasneci -
2022 : On the Trade-Off between Actionable Explanations and the Right to be Forgotten »
Martin Pawelczyk · Tobias Leemann · Asia Biega · Gjergji Kasneci -
2023 Poster: How to Data in Datathons »
Carlos Mougan · Richard Plant · Clare Teng · Marya Bazzi · Alvaro Cabrejas Egea · Ryan Chan · David Salvador Jasin · Martin Stoffel · Kirstie Whitaker · JULES MANSER -
2022 Poster: Hyperbolic Embedding Inference for Structured Multi-Label Prediction »
Bo Xiong · Michael Cochez · Mojtaba Nayyeri · Steffen Staab -
2022 Poster: Pseudo-Riemannian Graph Convolutional Networks »
Bo Xiong · Shichao Zhu · Nico Potyka · Shirui Pan · Chuan Zhou · Steffen Staab -
2021 : [S4] A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines »
Vadim Borisov · Johannes Meier · Johan Van den Heuvel · Hamed Jalali · Gjergji Kasneci