Timezone: »
This paper proposes \textit{collaborative symmetricity exploitation} (\ourmethod{}) framework to train a solver for the decoupling capacitor placement problem (DPP), one of the significant hardware design problems. Due to the sequentially coupled multi-level property of the hardware design process, the design condition of DPP changes depending on the design of higher-level problems. Also, the online evaluation of real-world electrical performance through simulation is extremely costly. Thus, we propose the \ourmethod{} framework that allows data-efficient offline learning of a DPP solver (i.e., contextualized policy) with high generalization capability over changing task conditions. Leveraging the symmetricity for offline learning of hardware design solver increases data-efficiency by reducing the solution space and improves generalization capability by capturing the invariant nature present regardless of changing conditions. Extensive experiments verified that \ourmethod{} with zero-shot inference outperforms the neural baselines and iterative conventional design methods on the DPP benchmark. Furthermore, \ourmethod{} greatly outperformed the expert method used to generate the offline data for training.
Author Information
HAEYEON KIM (KAIST)
Minsu Kim (Korea Advanced Institute of Science and Technology)
joungho kim (KAIST)
Jinkyoo Park (KAIST)
More from the Same Authors
-
2022 : Scale-conditioned Adaptation for Large Scale Combinatorial Optimization »
Minsu Kim · Jiwoo SON · Hyeonah Kim · Jinkyoo Park -
2022 : Neural Coarsening Process for Multi-level Graph Combinatorial Optimization »
Hyeonah Kim · Minsu Kim · Changhyun Kwon · Jinkyoo Park -
2023 Poster: Bootstrapped Training of Score-Conditioned Generator for Offline Design of Biological Sequences »
Minsu Kim · Federico Berto · Sungsoo Ahn · Jinkyoo Park -
2023 Poster: Learning Efficient Surrogate Dynamic Models with Graph Spline Networks »
Chuanbo Hua · Federico Berto · Michael Poli · Stefano Massaroli · Jinkyoo Park -
2022 Poster: Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization »
Minsu Kim · Junyoung Park · Jinkyoo Park -
2022 Poster: Learning NP-Hard Multi-Agent Assignment Planning using GNN: Inference on a Random Graph and Provable Auction-Fitted Q-learning »
HYUNWOOK KANG · Taehwan Kwon · Jinkyoo Park · James R. Morrison -
2022 Poster: Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher RĂ© · Stefano Ermon -
2021 : Neural Solvers for Fast and Accurate Numerical Optimal Control »
Federico Berto · Stefano Massaroli · Michael Poli · Jinkyoo Park -
2021 : TorchDyn: Implicit Models and Neural Numerical Methods in PyTorch »
Michael Poli · Stefano Massaroli · Atsushi Yamashita · Hajime Asama · Jinkyoo Park · Stefano Ermon -
2021 Poster: Differentiable Multiple Shooting Layers »
Stefano Massaroli · Michael Poli · Sho Sonoda · Taiji Suzuki · Jinkyoo Park · Atsushi Yamashita · Hajime Asama -
2021 Poster: Learning Collaborative Policies to Solve NP-hard Routing Problems »
Minsu Kim · Jinkyoo Park · joungho kim -
2021 Poster: Neural Hybrid Automata: Learning Dynamics With Multiple Modes and Stochastic Transitions »
Michael Poli · Stefano Massaroli · Luca Scimeca · Sanghyuk Chun · Seong Joon Oh · Atsushi Yamashita · Hajime Asama · Jinkyoo Park · Animesh Garg -
2020 Poster: Dissecting Neural ODEs »
Stefano Massaroli · Michael Poli · Jinkyoo Park · Atsushi Yamashita · Hajime Asama -
2020 Poster: Hypersolvers: Toward Fast Continuous-Depth Models »
Michael Poli · Stefano Massaroli · Atsushi Yamashita · Hajime Asama · Jinkyoo Park -
2020 Oral: Dissecting Neural ODEs »
Stefano Massaroli · Michael Poli · Jinkyoo Park · Atsushi Yamashita · Hajime Asama