Timezone: »
Kendall Shape-VAE : Learning Shapes in a Generative Framework
Sharvaree Vadgama · Jakub Tomczak · Erik Bekkers
Event URL: https://openreview.net/forum?id=nzh4N6kdl2G »
Learning an interpretable representation of data without supervision is an important precursor for the development of artificial intelligence. In this work, we introduce \textit{Kendall Shape}-VAE, a novel Variational Autoencoder framework for learning shapes as it disentangles the latent space by compressing information to simpler geometric symbols. In \textit{Kendall Shape}-VAE, we modify the Hyperspherical Variational Autoencoder such that it results in an exactly rotationally equivariant network using the notion of landmarks in the Kendall shape space. We show the exact equivariance of the model through experiments on rotated MNIST.
Author Information
Sharvaree Vadgama (University of Amsterdam)
Jakub Tomczak (Vrije Universiteit Amsterdam)
Erik Bekkers (University of Amsterdam)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Kendall Shape-VAE : Learning Shapes in a Generative Framework »
Sat. Dec 3rd 04:50 -- 05:00 PM Room
More from the Same Authors
-
2021 : Semi-supervised Multiple Instance Learning using Variational Auto-Encoders »
Ali Nihat Uzunalioglu · Tameem Adel · Jakub M. Tomczak -
2021 : Towards Lightweight Controllable Audio Synthesis with Conditional Implicit Neural Representations »
Jan Zuiderveld · Marco Federici · Erik Bekkers -
2021 : Semi-supervised Multiple Instance Learning using Variational Auto-Encoders »
Ali Nihat Uzunalioglu · Tameem Adel · Jakub M. Tomczak -
2023 : De Novo Drug Design with Joint Transformers »
Adam Izdebski · Ewelina Weglarz-Tomczak · Ewa Szczurek · Jakub Tomczak -
2023 Poster: A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference »
Emile van Krieken · Thiviyan Thanapalasingam · Jakub Tomczak · Frank van Harmelen · Annette Ten Teije -
2023 Poster: Latent Field Discovery in Interacting Dynamical Systems with Neural Fields »
Miltiadis (Miltos) Kofinas · Erik Bekkers · Naveen Nagaraja · Efstratios Gavves -
2022 Spotlight: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 : Neural Ideograms and Equivariant Representation Learning »
Erik Bekkers -
2022 : Panel Discussion I: Geometric and topological principles for representation learning in ML »
Irina Higgins · Taco Cohen · Erik Bekkers · Nina Miolane · Rose Yu -
2022 Poster: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 Poster: On Analyzing Generative and Denoising Capabilities of Diffusion-based Deep Generative Models »
Kamil Deja · Anna Kuzina · Tomasz Trzcinski · Jakub Tomczak -
2021 Poster: Invertible DenseNets with Concatenated LipSwish »
Yura Perugachi-Diaz · Jakub Tomczak · Sandjai Bhulai -
2021 Poster: Storchastic: A Framework for General Stochastic Automatic Differentiation »
Emile van Krieken · Jakub Tomczak · Annette Ten Teije -
2020 Poster: The Convolution Exponential and Generalized Sylvester Flows »
Emiel Hoogeboom · Victor Garcia Satorras · Jakub Tomczak · Max Welling -
2019 Poster: Combinatorial Bayesian Optimization using the Graph Cartesian Product »
Changyong Oh · Jakub Tomczak · Stratis Gavves · Max Welling -
2019 Poster: Greedy Sampling for Approximate Clustering in the Presence of Outliers »
Aditya Bhaskara · Sharvaree Vadgama · Hong Xu