Timezone: »
Geometric inductive biases such as spatial curvature, factorizability, or equivariance have been shown to enable learning of latent spaces which better reflect the structure of data and perform better on downstream tasks. Training such models, however, can be a challenging task due to the topological constraints imposed by encoding to such structures. In this paper, we theoretically and empirically characterize obstructions to training autoencoders with geometric latent spaces. These include issues such as singularity (e.g. self-intersection), incorrect degree or winding number, and non-isometric homeomorphic embedding. We propose a method, isometric autoencoder, to improve the stability of training and convergence to an isometric mapping in geometric latent spaces. We perform an empirical evaluation of this method over 2 domains, which demonstrates that our approach can better circumvent the identified optimization problems.
Author Information
Babak Esmaeili (University of Amsterdam)
Robin Walters (Northeastern University)
Heiko Zimmermann (University of Amsterdam)
Jan-Willem van de Meent (University of Amsterdam and Northeastern University)
More from the Same Authors
-
2022 : A Noether's theorem for gradient flow: Continuous symmetries of the architecture and conserved quantities of gradient flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Charting Flat Minima Using the Conserved Quantities of Gradient Flow »
Bo Zhao · Iordan Ganev · Robin Walters · Rose Yu · Nima Dehmamy -
2022 : Image to Icosahedral Projection for $\mathrm{SO}(3)$ Object Reasoning from Single-View Images »
David Klee · Ondrej Biza · Robert Platt · Robin Walters -
2022 Poster: Meta-Learning Dynamics Forecasting Using Task Inference »
Rui Wang · Robin Walters · Rose Yu -
2022 Poster: Symmetry Teleportation for Accelerated Optimization »
Bo Zhao · Nima Dehmamy · Robin Walters · Rose Yu -
2021 Poster: Automatic Symmetry Discovery with Lie Algebra Convolutional Network »
Nima Dehmamy · Robin Walters · Yanchen Liu · Dashun Wang · Rose Yu -
2021 Poster: Nested Variational Inference »
Heiko Zimmermann · Hao Wu · Babak Esmaeili · Jan-Willem van de Meent -
2020 Poster: Neural Topographic Factor Analysis for fMRI Data »
Eli Sennesh · Zulqarnain Khan · Yiyu Wang · J Benjamin Hutchinson · Ajay Satpute · Jennifer Dy · Jan-Willem van de Meent -
2019 : Jan-Willem van de Meent - Compositional Methods for Learning and Inference in Deep Probabilistic Programs »
Jan-Willem van de Meent -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 : Black Box Policy Search with Probabilistic Programs »
Jan-Willem van de Meent -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani