Timezone: »
The deep connections between Partial Differential Equations (PDEs) and Graph Neural Networks (GNNs) have recently generated a lot of interest in PDE-inspired architectures for learning on graphs. However, despite being more interpretable and better understood via well-established tools from PDE analysis, the dynamics these models use are often too simple for complicated node classification tasks. The recently proposed Neural Sheaf Diffusion (NSD) models address this by making use of an additional geometric structure over the graph, called a sheaf, that can support a provably powerful class of diffusion equations. In this work, we propose Neural Sheaf Propagation (NSP), a new PDE-based Sheaf Neural Network induced by the wave equation on sheaves. Unlike diffusion models that are characterised by a dissipation of energy, wave models conserve energy, which can be beneficial for node classification tasks on heterophilic graphs. In practice, we show that NSP obtains competitive results with NSD and outperforms many other existent models.
Author Information
Julian Suk (University of Twente)
Lorenzo Giusti (University of Roma "La Sapienza")
Tamir Hemo (California Institute of Technology)
Miguel Lopez (University of Pennsylvania)
Marco La Vecchia
Konstantinos Barmpas (Imperial College London)
Cristian Bodnar (University of Cambridge)
More from the Same Authors
-
2021 : Equivariant graph neural networks as surrogate for computational fluid dynamics in 3D artery models »
Julian Suk · Phillip Lippe · Christoph Brune · Jelmer Wolterink -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : On Second Order Behaviour in Augmented Neural ODEs: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2021 Poster: Weisfeiler and Lehman Go Cellular: CW Networks »
Cristian Bodnar · Fabrizio Frasca · Nina Otter · Yuguang Wang · Pietro Liò · Guido Montufar · Michael Bronstein -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió