Timezone: »

 
Shannon Information of Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized
Mohammad Samavat · Tom Bartol · Cailey Bromer · Jared Bowden · Dusten Hubbard · Dakota Hanka · Masaaki Kuwajima · John Mendenhall · Patrick Parker · Wickliffe Abraham · Kristen Harris · Terrence Sejnowski
Event URL: https://openreview.net/forum?id=L686gSQnAfL »

Exploring different aspects of synaptic plasticity processes in the hippocampus is crucial to understanding mechanisms of learning and memory, improving artificial intelligence algorithms, and neuromorphic computers. Synapses from the same axon onto the same dendrite have a common history of coactivation and have similar spine head volumes, suggesting that synapse function precisely modulates structure. We have applied Shannon information theory to obtain a new analysis of synaptic information storage capacity (SISC) using non-overlapping dimensions of dendritic spine head volumes as a measure of synaptic weights with distinct states. Spine head volumes in the stratum radiatum of hippocampal area CA1 occupied 24 distinct states (4.1 bits). In contrast, spine head volumes in the middle molecular layer of control dentate gyrus occupied only 5 distinct states (2 bits). Thus, synapses in different hippocampal regions had different synaptic information storage capacities. Moreover, these were not fixed properties but increased during long-term potentiation, such that by 30 min following induction, spine head volumes in the middle molecular layer increased to occupy 10 distinct states (3 bits), and this increase lasted for at least 2 hours. Measurement of the Kullback-Liebler divergence revealed that synaptic states evolved closer to storing the maximum amount of information during long-term potentiation. These results show that our new SISC analysis provides an improved and reliable estimate of information storage capacity of synapses. SISC revealed that the Shannon information after long-term potentiation is nearly maximized for the number of distinguishable states.

Author Information

Mohammad Samavat (UCSD, The Salk Institute)
Tom Bartol (Salk Institute)
Cailey Bromer
Jared Bowden
Dusten Hubbard
Dakota Hanka
Masaaki Kuwajima
John Mendenhall
Patrick Parker
Wickliffe Abraham (University of Otago)
Kristen Harris (University of Texas at Austin)
Terrence Sejnowski (Salk Institute)

More from the Same Authors

  • 2022 : Exploring The Precision of Real Intelligence Systems at Synapse Resolution »
    Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski
  • 2022 : Using Shannon Information to Probe the Precision of Synaptic Strengths »
    Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski
  • 2021 Workshop: Causal Inference & Machine Learning: Why now? »
    Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl
  • 2019 : Poster Session »
    Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar
  • 2018 Poster: Gradient Descent for Spiking Neural Networks »
    Dongsung Huh · Terrence Sejnowski
  • 2016 : From Brains to Bits and Back Again »
    Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding
  • 2013 Session: Oral Session 3 »
    Terrence Sejnowski
  • 2012 Invited Talk: Suspicious Coincidences in the Brain »
    Terrence Sejnowski
  • 2011 Session: Opening Remarks and Awards »
    Terrence Sejnowski · Peter Bartlett · Fernando Pereira
  • 2010 Placeholder: Opening Remarks »
    Terrence Sejnowski · Neil D Lawrence
  • 2010 Talk: Opening Remarks and Awards »
    Richard Zemel · Terrence Sejnowski · John Shawe-Taylor
  • 2009 Workshop: The Curse of Dimensionality Problem: How Can the Brain Solve It? »
    Simon Haykin · Terrence Sejnowski · Steven W Zucker
  • 2008 Workshop: Cortical Microcircuits and their Computational Functions »
    Tomaso Poggio · Terrence Sejnowski
  • 2006 Workshop: Decoding the neural code »
    Eric Thomson · Bill Kristan · Terrence Sejnowski