Timezone: »
Diffusion models have demonstrated remarkable progress in image generation quality, especially when guidance is used to control the generative process. However, such guidance requires a large amount of image-annotation pairs for training and is thus dependent on their availability, correctness and unbiasedness. In this paper, we aim to eliminate the need for such annotation by instead leveraging the flexibility of self-supervision signals to design a framework for self-guided diffusion models. By leveraging a feature extraction function and a self-annotation function, our method provides flexible guidance signals at various image granularities: from the level of holistic images to object boxes and even segmentation masks.
Author Information
TAO HU (University of Amsterdam)
David Zhang (University of Amsterdam)
Yuki Asano (University of Amsterdam)
Gertjan Burghouts (TNO - Intelligent Imaging)
Cees Snoek (University of Amsterdam)
More from the Same Authors
-
2021 : PASS: An ImageNet replacement for self-supervised pretraining without humans »
Yuki Asano · Christian Rupprecht · Andrew Zisserman · Andrea Vedaldi -
2021 : PASS: An ImageNet replacement for self-supervised pretraining without humans »
Yuki Asano · Christian Rupprecht · Andrew Zisserman · Andrea Vedaldi -
2021 : Equidistant Hyperspherical Prototypes Improve Uncertainty Quantification »
Gertjan Burghouts · Pascal Mettes -
2022 : Maximum Class Separation as Inductive Bias in One Matrix »
Tejaswi Kasarla · Gertjan Burghouts · Max van Spengler · Elise van der Pol · Rita Cucchiara · Pascal Mettes -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Robust Scheduling with GFlowNets »
David Zhang · Corrado Rainone · Markus Peschl · Roberto Bondesan -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 Workshop: Self-Supervised Learning: Theory and Practice »
Ishan Misra · Pengtao Xie · Gul Varol · Yale Song · Yuki Asano · Xiaolong Wang · Pauline Luc -
2022 Poster: Association Graph Learning for Multi-Task Classification with Category Shifts »
Jiayi Shen · Zehao Xiao · Xiantong Zhen · Cees Snoek · Marcel Worring -
2022 Poster: Maximum Class Separation as Inductive Bias in One Matrix »
Tejaswi Kasarla · Gertjan Burghouts · Max van Spengler · Elise van der Pol · Rita Cucchiara · Pascal Mettes -
2022 Poster: Variational Model Perturbation for Source-Free Domain Adaptation »
Mengmeng Jing · Xiantong Zhen · Jingjing Li · Cees Snoek -
2021 Poster: Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers »
Mandela Patrick · Dylan Campbell · Yuki Asano · Ishan Misra · Florian Metze · Christoph Feichtenhofer · Andrea Vedaldi · João Henriques -
2021 Poster: Independent Prototype Propagation for Zero-Shot Compositionality »
Frank Ruis · Gertjan Burghouts · Doina Bucur -
2021 Oral: Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers »
Mandela Patrick · Dylan Campbell · Yuki Asano · Ishan Misra · Florian Metze · Christoph Feichtenhofer · Andrea Vedaldi · João Henriques -
2021 Poster: Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models »
Hannah Rose Kirk · Yennie Jun · Filippo Volpin · Haider Iqbal · Elias Benussi · Frederic Dreyer · Aleksandar Shtedritski · Yuki Asano -
2020 Poster: Labelling unlabelled videos from scratch with multi-modal self-supervision »
Yuki Asano · Mandela Patrick · Christian Rupprecht · Andrea Vedaldi -
2007 Poster: The Distribution Family of Similarity Distances »
Gertjan Burghouts · Arnold Smeulders · Jan-Mark Geusebroek