Timezone: »

Conditioned Score-Based Models for Learning Collision-Free Trajectory Generation
Joao Carvalho · Mark Baierl · Julen Urain · Jan Peters
Event URL: https://openreview.net/forum?id=4Vqu4N1jjrx »

Planning a motion in a cluttered environment is a recurring task autonomous agents need to solve. This paper presents a first attempt to learn generative models for collision-free trajectory generation based on conditioned score-based models. Given multiple navigation tasks, environment maps and collision-free trajectories pre-computed with a sample-based planner, using a signed distance function loss we learn a vision encoder of the map and use its embedding to learn a conditioned score-based model for trajectory generation. A novelty of our method is to integrate in a temporal U-net architecture, using a cross-attention mechanism, conditioning variables such as the latent representation of the environment and task features. We validate our approach in a simulated 2D planar navigation toy task, where a robot needs to plan a path that avoids obstacles in a scene.

Author Information

Joao Carvalho (TU Darmstadt)
Mark Baierl (TU Darmstadt)
Julen Urain
Jan Peters (TU Darmstadt & MPI Intelligent Systems)

Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.

More from the Same Authors