Timezone: »
Machine learning models often use group attributes to assign personalized predictions. In this work, we show that models that use group attributes can assign unnecessarily inaccurate predictions to specific groups -- i.e., that training a model with group attributes can reduce performance for specific groups. We propose formal conditions to ensure the ``fair use" of group attributes in prediction models -- i.e., collective preference guarantees that can be checked by training one additional model. We characterize how machine learning models can exhibit fair use due to standard practices in specification, training, and deployment. We study the prevalence of fair use violations in clinical prediction models. Our results highlight the inability to resolve fair use violations, underscore the need to measure the gains of personalization for all groups who provide personal data and illustrate actionable interventions to mitigate harm.
Author Information
Vinith Suriyakumar (Massachusetts Institute of Technology)
Marzyeh Ghassemi (MIT)
Berk Ustun (UC San Diego)
More from the Same Authors
-
2021 : Learning through Recourse under Censoring »
Jennifer Chien · Berk Ustun · Margaret Roberts -
2021 : Improving the Fairness of Deep Chest X-ray Classifiers »
Haoran Zhang · Natalie Dullerud · Karsten Roth · Stephen Pfohl · Marzyeh Ghassemi -
2021 : Learning through Recourse under Censoring »
Jennifer Chien · Berk Ustun · Margaret Roberts -
2022 : Multimodal Checklists for Fair Clinical Decision Support »
Qixuan Jin · Marzyeh Ghassemi -
2022 : Deep Metric Learning to predict cardiac pressure with ECG »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Identifying Disparities in Sepsis Treatment using Inverse Reinforcement Learning »
Hyewon Jeong · Taylor Killian · Sanjat Kanjilal · Siddharth Nayak · Marzyeh Ghassemi -
2022 : Evaluating and Improving Robustness of Self-Supervised Representations to Spurious Correlations »
Kimia Hamidieh · Haoran Zhang · Marzyeh Ghassemi -
2022 : Learning to Defer in Ranking Systems »
Aparna Balagopalan · Haoran Zhang · Elizabeth Bondi-Kelly · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Fair Active learning by exploiting causal data structure »
Sindhu C M Gowda · Haoran Zhang · Marzyeh Ghassemi -
2022 : Evaluation of Active Learning and Domain Adaptation on Health Data »
Kristina Holsapple · Haoran Zhang · Marzyeh Ghassemi -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Feature Restricted Group Dropout for Robust Electronic Health Record Predictions »
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : "Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts »
Haoran Zhang · Harvineet Singh · Marzyeh Ghassemi · Shalmali Joshi -
2022 : Real world relevance of generative counterfactual explanations »
Swami Sankaranarayanan · Thomas Hartvigsen · Lauren Oakden-Rayner · Marzyeh Ghassemi · Phillip Isola -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : Predictive Multiplicity in Probabilistic Classification »
Jamelle Watson-Daniels · David Parkes · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2022 : Dissecting In-the-Wild Stress from Multimodal Sensor Data »
Sujay Nagaraj · Thomas Hartvigsen · Adrian Boch · Luca Foschini · Marzyeh Ghassemi · Sarah Goodday · Stephen Friend · Anna Goldenberg -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : Unsupervised Deep Metric Learning for the inference of hemodynamic value with Electrocardiogram signals »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Unsupervised Deep Metric Learning for the inference of hemodynamic value with Electrocardiogram signals »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 Workshop: Robustness in Sequence Modeling »
Nathan Ng · Haoran Zhang · Vinith Suriyakumar · Chantal Shaib · Kyunghyun Cho · Yixuan Li · Alice Oh · Marzyeh Ghassemi -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Algorithms that Approximate Data Removal: New Results and Limitations »
Vinith Suriyakumar · Ashia Wilson -
2022 Poster: On the Epistemic Limits of Personalized Prediction »
Lucas Monteiro Paes · Carol Long · Berk Ustun · Flavio Calmon -
2022 Poster: If Influence Functions are the Answer, Then What is the Question? »
Juhan Bae · Nathan Ng · Alston Lo · Marzyeh Ghassemi · Roger Grosse -
2021 : Data Opportunities: unsolved medical problems and where new data can help »
Bin Yu · Regina Barzilay · Marzyeh Ghassemi · Emma Pierson -
2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott -
2021 Poster: Learning Optimal Predictive Checklists »
Haoran Zhang · Quaid Morris · Berk Ustun · Marzyeh Ghassemi -
2021 Poster: Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning »
Timo Milbich · Karsten Roth · Samarth Sinha · Ludwig Schmidt · Marzyeh Ghassemi · Bjorn Ommer -
2021 Poster: Medical Dead-ends and Learning to Identify High-Risk States and Treatments »
Mehdi Fatemi · Taylor Killian · Jayakumar Subramanian · Marzyeh Ghassemi -
2020 : Invited Talk 4: Actionable Recourse in Machine Learning »
Berk Ustun -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2020 : Welcome »
Marzyeh Ghassemi -
2019 Poster: The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers »
Alex Lu · Amy Lu · Wiebke Schormann · Marzyeh Ghassemi · David Andrews · Alan Moses -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau