Timezone: »
Targeted Causal Elicitation
Nazaal Ibrahim · ST John · Zhigao Guo · Samuel Kaski
Event URL: https://openreview.net/forum?id=oqRw-a4rf36 »
We look at the problem of learning causal structure for a fixed downstream causal effect optimization task. In contrast to previous work which often focuses on running interventional experiments, we consider an often overlooked source of information - a domain expert. In the Bayesian setting this amounts to augmenting the likelihood with a user model whose parameters account for possible biases of the expert. Such a model allows for active elicitation in a manner that is most informative to the optimization task at hand.
Author Information
Nazaal Ibrahim (Aalto University)
ST John (Aalto University & Finnish Center for Artificial Intelligence)
Zhigao Guo (University of Manchester)
Samuel Kaski (Aalto University and University of Manchester)
More from the Same Authors
-
2022 : Fantasizing with Dual GPs in Bayesian Optimization and Active Learning »
Paul Chang · Prakhar Verma · ST John · Victor Picheny · Henry Moss · Arno Solin -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : More trustworthy Bayesian optimization of materials properties by adding human into the loop »
Armi Tiihonen · Louis Filstroff · Petrus Mikkola · Emma Lehto · Samuel Kaski · Milica Todorović · Patrick Rinke -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Differentiable User Models »
Alex Hämäläinen · Mustafa Mert Çelikok · Samuel Kaski -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Joint Point Process Model for Counterfactual Treatment-Outcome Trajectories Under Policy Interventions »
Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen -
2022 : Collaborative AI for assisting virtual laboratories »
Samuel Kaski -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2022 : HAPNEST: An efficient tool for generating large-scale genetics datasets from limited training data »
Sophie Wharrie · Zhiyu Yang · Vishnu Raj · Remo Monti · Rahul Gupta · Ying Wang · Alicia Martin · Luke O'Connor · Samuel Kaski · Pekka Marttinen · Pier Palamara · Christoph Lippert · Andrea Ganna -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Deconfounded Representation Similarity for Comparison of Neural Networks »
Tianyu Cui · Yogesh Kumar · Pekka Marttinen · Samuel Kaski -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2017 Poster: Non-Stationary Spectral Kernels »
Sami Remes · Markus Heinonen · Samuel Kaski -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski