Timezone: »
Causal discovery is an important problem in many fields such as medicine, epidemiology, or economics. Here, causal structure is necessary to relay information about the effectiveness of treatments. Recently, causal structure has also been linked with generalisation and out of distribution generalisation in prediction tasks. This problem however, is only solvable upto a Markov equivalence class without strong assumptions. Previous work has made assumptions on the data generation process to render the causal graph identifiable. These methods fail when the data generation assumptions no longer hold. In this work, we directly algorithmise the independence of causal mechanism (ICM) assumption to achieve a flexible causal discovery algorithm. In the bivariate case, this is done by showing that independent parametrisation with independent priors encodes an ICM assumption. We show that this implies different marginal likelihoods for models of different causal directions. Using a Bayesian model selection procedure to take advantage of this, we show that our method outperforms competing methods.
Author Information
Anish Dhir (Imperial College London)
PhD student under Dr. Mark van der Wilk.
Mark van der Wilk (Imperial College London)
More from the Same Authors
-
2022 : Actually Sparse Variational Gaussian Processes »
Jake Cunningham · So Takao · Mark van der Wilk · Marc Deisenroth -
2022 : Recommendations for Baselines and Benchmarking Approximate Gaussian Processes »
Sebastian Ober · David Burt · Artem Artemev · Mark van der Wilk -
2022 : Sparse Convolutions on Lie Groups »
Tycho van der Ouderaa · Mark van der Wilk -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: SnAKe: Bayesian Optimization with Pathwise Exploration »
Jose Pablo Folch · Shiqiang Zhang · Robert Lee · Behrang Shafei · David Walz · Calvin Tsay · Mark van der Wilk · Ruth Misener -
2022 Poster: Memory safe computations with XLA compiler »
Artem Artemev · Yuze An · Tilman Roeder · Mark van der Wilk -
2022 Poster: Relaxing Equivariance Constraints with Non-stationary Continuous Filters »
Tycho van der Ouderaa · David W. Romero · Mark van der Wilk -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker