Timezone: »
Network interference, where the outcome of an individual is affected by the treatment of others in their social network, is pervasive in real-world settings. However, it poses a challenge to estimating causal effects. We consider the task of estimating the total treatment effect (TTE), or the difference between the average outcomes of the population when everyone is treated versus when no one is, under network interference. Under a non-uniform Bernoulli randomized design, we utilize knowledge of the network structure to provide an unbiased estimator for the TTE when network interference effects are constrained to low-order interactions among neighbors of an individual. We make no assumptions on the graph other than bounded degree, allowing for well-connected networks that may not be easily clustered. We derive a bound on the variance of our estimator and show in simulated experiments that it performs well compared with standard TTE estimators.
Author Information
Mayleen Cortez (Cornell University)
Mayleen Cortez-Rodriguez is a third-year Applied Mathematics Ph.D. student at Cornell University. She graduated from California State University, Channel Islands in May 2020 with a B.S. in Mathematics and a minor in Computer Science. She is a National Science Foundation Graduate Research Fellowship recipient. Past research interests include mathematical modeling and reinforcement learning with applications to biology and public health. She is currently working with Dr. Christina Yu on problems in causal inference under interference.
Matthew Eichhorn (Cornell University)
I am a fourth-year PhD student in the Center for Applied Mathematics at Cornell University, where I am advised by Siddhartha Banerjee. My research focuses on the design of algorithms for combinatorial problems, particularly with applications to game theory. In addition, I have a passion for teaching and curricular development. I have helped to develop undergraduate course materials for the Cornell Math Department's Active Learning Initiative. Beyond academia, I am an avid baker and a devoted fan of the Buffalo Bills.
Christina Yu (Cornell University)
More from the Same Authors
-
2022 : Matrix Estimation for Offline Evaluation in Reinforcement Learning with Low-Rank Structure »
Xumei Xi · Christina Yu · Yudong Chen -
2022 : A Causal Inference Framework for Network Interference with Panel Data »
Sarah Cen · Anish Agarwal · Christina Yu · Devavrat Shah -
2022 : Exploiting Neighborhood Interference with Low Order Interactions under Unit Randomized Design »
Mayleen Cortez · Matthew Eichhorn · Christina Yu -
2022 Poster: Staggered Rollout Designs Enable Causal Inference Under Interference Without Network Knowledge »
Mayleen Cortez · Matthew Eichhorn · Christina Yu -
2020 Poster: Adaptive Discretization for Model-Based Reinforcement Learning »
Sean Sinclair · Tianyu Wang · Gauri Jain · Siddhartha Banerjee · Christina Yu -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Nonparametric Contextual Bandits in Metric Spaces with Unknown Metric »
Nirandika Wanigasekara · Christina Yu -
2017 : Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christina Lee -
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah -
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah -
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah