Timezone: »
Many hardware design problems require navigating a combinatorial search space to find solutions that balance multiple conflicting objectives, e.g., area and delay. While traditional approaches rely on hand-tuned heuristics to combat the large search space, reinforcement learning (RL) has recently achieved promising results, effectively reducing the need for human expertise. However, the existing RL method has prohibitively high sample complexity requirements.In this paper, we present a novel multi-objective reinforcement learning algorithm for combinatorial optimization and apply it to automating designs for prefix adder circuits, which are fundamental to high-performance digital components. We propose to track the evolving Pareto frontier to adaptively select reset states for an episodic RL agent. Our proposed reset algorithm balances exploiting the best-discovered states so far and exploring nearby states to escape local optima. Through empirical evaluations with a real-world physical synthesis workflow on two different design tasks, we demonstrate that our new algorithm trains agents to expand the Pareto frontier faster compared to other baselines. In particular, our algorithm achieves comparable quality results with only 20% of the samples compared to the scalarized baseline. Additional ablation studies confirm that both exploration and exploitation components work together to accelerate the Pareto frontier expansion.
Author Information
Jialin Song (NVIDIA)
Rajarshi Roy (Stanford University)
Jonathan Raiman (NVIDIA)
Robert Kirby (University of Illinois at Urbana-Champaign)
Neel Kant (NVIDIA)
Saad Godil (NVIDIA)
Bryan Catanzaro (NVIDIA)
More from the Same Authors
-
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: Factuality Enhanced Language Models for Open-Ended Text Generation »
Nayeon Lee · Wei Ping · Peng Xu · Mostofa Patwary · Pascale N Fung · Mohammad Shoeybi · Bryan Catanzaro -
2021 : Closing Remarks »
Jonathan Raiman · Mimee Xu · Martin Maas · Anna Goldie · Azade Nova · Benoit Steiner -
2021 : Opening Remarks »
Jonathan Raiman · Anna Goldie · Benoit Steiner · Azade Nova · Martin Maas · Mimee Xu -
2021 Workshop: ML For Systems »
Benoit Steiner · Jonathan Raiman · Martin Maas · Azade Nova · Mimee Xu · Anna Goldie -
2021 Poster: Long-Short Transformer: Efficient Transformers for Language and Vision »
Chen Zhu · Wei Ping · Chaowei Xiao · Mohammad Shoeybi · Tom Goldstein · Anima Anandkumar · Bryan Catanzaro -
2020 : Invited Speaker: Bryan Catanzaro »
Bryan Catanzaro -
2020 Workshop: Machine Learning for Systems »
Anna Goldie · Azalia Mirhoseini · Jonathan Raiman · Martin Maas · Xinlei XU -
2020 Poster: Can Q-Learning with Graph Networks Learn a Generalizable Branching Heuristic for a SAT Solver? »
Vitaly Kurin · Saad Godil · Shimon Whiteson · Bryan Catanzaro -
2019 Workshop: ML For Systems »
Milad Hashemi · Azalia Mirhoseini · Anna Goldie · Kevin Swersky · Xinlei XU · Jonathan Raiman · Jonathan Raiman -
2019 : Poster Spotlights B (13 posters) »
Alberto Camacho · Chris Percy · Vaishak Belle · Beliz Gunel · Toryn Klassen · Tillman Weyde · Mohamed Ghalwash · Siddhant Arora · León Illanes · Jonathan Raiman · Qing Wang · Alexander Lew · So Yeon Min -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2018 Workshop: Machine Learning for Systems »
Anna Goldie · Azalia Mirhoseini · Jonathan Raiman · Kevin Swersky · Milad Hashemi