Timezone: »

 
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
Srivatsan Krishnan · Natasha Jaques · Shayegan Omidshafiei · Dan Zhang · Izzeddin Gur · Vijay Janapa Reddi · Aleksandra Faust
Event URL: https://openreview.net/forum?id=F-vVJHFJaT »

Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems growin complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compileroptimization, etc.) quickly results in a combinatorial explosion of design space.This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role as-signed to each agent. We test this hypothesis by designing domain-specific DRAMmemory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.

Author Information

Srivatsan Krishnan (Harvard University)
Natasha Jaques (Google Brain, UC Berkeley)

Natasha Jaques holds a joint position as a Research Scientist at Google Brain and Postdoctoral Fellow at UC Berkeley. Her research focuses on Social Reinforcement Learning in multi-agent and human-AI interactions. Natasha completed her PhD at MIT, where her thesis received the Outstanding PhD Dissertation Award from the Association for the Advancement of Affective Computing. Her work has also received Best Demo at NeurIPS, an honourable mention for Best Paper at ICML, Best of Collection in the IEEE Transactions on Affective Computing, and Best Paper at the NeurIPS workshops on ML for Healthcare and Cooperative AI. She has interned at DeepMind, Google Brain, and was an OpenAI Scholars mentor. Her work has been featured in Science Magazine, Quartz, MIT Technology Review, Boston Magazine, and on CBC radio. Natasha earned her Masters degree from the University of British Columbia, and undergraduate degrees in Computer Science and Psychology from the University of Regina.

Shayegan Omidshafiei (Google)
Dan Zhang (Google Brain)
Izzeddin Gur (Google)
Vijay Janapa Reddi (Harvard University)
Aleksandra Faust (Google Brain)

Aleksandra Faust is a Senior Research Engineer at Google Brain, specializing in robot intelligence. Previously, Aleksandra led machine learning efforts for self-driving car planning and controls in Waymo and Google X, and was a researcher in Sandia National Laboratories, where she worked on satellites and other remote sensing applications. She earned a Ph.D. in Computer Science at the University of New Mexico (with distinction), a Master’s in Computer Science from University of Illinois at Urbana-Champaign, and a Bachelor’s in Mathematics from University of Belgrade, Serbia. Her research interests include reinforcement learning, adaptive motion planning, and machine learning for decision-making. Aleksandra won Tom L. Popejoy Award for the best doctoral dissertation at the University of New Mexico in Engineering, Mathematics, and Sciences in the period of 2011-2014. She was also awarded with the Best Paper in Service Robotics at ICRA 2018, Sandia National Laboratories’ Doctoral Studies Program and New Mexico Space Grant fellowships, as well as the Outstanding Graduate Student in Computer Science award. Her work has been featured in the New York Times.​

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors