Timezone: »

 
Assessing multi-objective optimization of molecules with genetic algorithms against relevant baselines
Nathanael Kusanda · Gary Tom · Riley Hickman · AkshatKumar Nigam · Kjell Jorner · Alan Aspuru-Guzik
Event URL: https://openreview.net/forum?id=sWRZxIcR8qK »

Chemical design is often complex, requiring the optimal trade-off between several competing objectives. Multi-objective optimization algorithms are designed to optimally balance multiple objectives, but many chemical design approaches use the naïve weighted sum method, which is not guaranteed to give desired solutions. Here, we rigorously assess the performance of genetic algorithms for inverse molecular design, using more advanced multi-objective methods. Chimera and Hypervolume are assessed against relevant baselines for the optimization of molecules with high logP and high QED score. As a more realistic task, we also simulate a drug design campaign, optimizing for synthetically accessible molecules which bind to the 1OYT protein. We show that both methods achieve better formal optimality than the baselines and generate molecules closer to a user-specified Utopian point in property space, mimicking typical materials design objectives.

Author Information

Nathanael Kusanda (University of Toronto)
Nathanael Kusanda

I am a third-year Energy Systems Engineering student passionate about accelerating the transition to Renewable Energy through Artificial Intelligence. I produced a paper for the AI4Mat workshop benchmarking my implementation of Multi-objective Optimisation in Genetic Algorithms, which I worked on with the Aspuru-Guzik group to complement a project using AI to generate molecules for Organic Redox Flow Batteries.

Gary Tom (University of Toronto)
Riley Hickman (University of Toronto)
AkshatKumar Nigam (University Of Toronto)
Kjell Jorner
Alan Aspuru-Guzik (University of Toronto)

More from the Same Authors

  • 2021 : Learning Discrete Neural Reaction Class to Improve Retrosynthesis Prediction »
    Théophile Gaudin · Animesh Garg · Alan Aspuru-Guzik
  • 2022 : Group SELFIES: A Robust Fragment-Based Molecular String Representation »
    Austin Cheng · Andy Cai · Santiago Miret · Gustavo Malkomes · Mariano Phielipp · Alan Aspuru-Guzik
  • 2022 : Conformer Search Using SE3-Transformers and Imitation Learning »
    Luca Thiede · Santiago Miret · Krzysztof Sadowski · Haoping Xu · Mariano Phielipp · Alan Aspuru-Guzik
  • 2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
    Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang
  • 2023 Poster: Tartarus: A Benchmarking Platform for Realistic And Practical Inverse Molecular Design »
    AkshatKumar Nigam · Robert Pollice · Gary Tom · Kjell Jorner · John Willes · Luca Thiede · Anshul Kundaje · Alan Aspuru-Guzik
  • 2022 Workshop: AI for Accelerated Materials Design (AI4Mat) »
    Santiago Miret · Marta Skreta · Zamyla Morgan-Chan · Benjamin Sanchez-Lengeling · Shyue Ping Ong · Alan Aspuru-Guzik
  • 2020 : Panel »
    Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider
  • 2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
    Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg
  • 2019 : Alán Aspuru-Guzik »
    Alan Aspuru-Guzik
  • 2019 : Morning Coffee Break & Poster Session »
    Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger
  • 2019 : Molecules and Genomes »
    David Haussler · Djork-Arné Clevert · Michael Keiser · Alan Aspuru-Guzik · David Duvenaud · David Jones · Jennifer Wei · Alexander D'Amour
  • 2017 : Machine Learning for Molecular Materials Design »
    Alan Aspuru-Guzik
  • 2017 Workshop: Machine Learning for Molecules and Materials »
    Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda