Timezone: »
Bayesian optimization (BO) has proven to be effective approach for guiding sample-efficient exploration of materials domains and is increasingly being used in automated materials optimization set-ups. However, when exploring novel materials, sample quality may vary unexpectedly, which can even invalidate the optimization procedure if it remains undetected. This issue limits the use of highly-automated optimization loops, especially in high-dimensional materials spaces with a lot of samples. Sample quality may be hard to define unequivocally for a machine but human scientists are usually good at judging sample quality, at least on a cursory yet often sufficient level. In this work, we demonstrate that humans can be added into the BO loop as experts to comment on the sample quality, which results in more trustworthy BO results. We implemented human-in-the-loop BO via a data fusion approach and applied virtual BO cycles on experimental perovskite film stability data from literature. The human-in-the-loop approach facilitates automated materials design and characterization by reducing the occurrence of invalid optimization results.
Author Information
Armi Tiihonen (Aalto University)
Louis Filstroff (Aalto University)
Petrus Mikkola (Aalto University)
Emma Lehto
Samuel Kaski (Aalto University and University of Manchester)
Milica Todorović
Patrick Rinke
More from the Same Authors
-
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Targeted Causal Elicitation »
Nazaal Ibrahim · ST John · Zhigao Guo · Samuel Kaski -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Differentiable User Models »
Alex Hämäläinen · Mustafa Mert Çelikok · Samuel Kaski -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Collaborative AI for assisting virtual laboratories »
Samuel Kaski -
2022 : Noise-Aware Statistical Inference with Differentially Private Synthetic Data »
Ossi Räisä · Joonas Jälkö · Antti Honkela · Samuel Kaski -
2022 : HAPNEST: An efficient tool for generating large-scale genetics datasets from limited training data »
Sophie Wharrie · Zhiyu Yang · Vishnu Raj · Remo Monti · Rahul Gupta · Ying Wang · Alicia Martin · Luke O'Connor · Samuel Kaski · Pekka Marttinen · Pier Palamara · Christoph Lippert · Andrea Ganna -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Deconfounded Representation Similarity for Comparison of Neural Networks »
Tianyu Cui · Yogesh Kumar · Pekka Marttinen · Samuel Kaski -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2021 Poster: De-randomizing MCMC dynamics with the diffusion Stein operator »
Zheyang Shen · Markus Heinonen · Samuel Kaski -
2020 Poster: Rethinking pooling in graph neural networks »
Diego Mesquita · Amauri Souza · Samuel Kaski -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 Poster: Machine Teaching of Active Sequential Learners »
Tomi Peltola · Mustafa Mert Çelikok · Pedram Daee · Samuel Kaski -
2017 Poster: Non-Stationary Spectral Kernels »
Sami Remes · Markus Heinonen · Samuel Kaski -
2017 Poster: Differentially private Bayesian learning on distributed data »
Mikko Heikkilä · Eemil Lagerspetz · Samuel Kaski · Kana Shimizu · Sasu Tarkoma · Antti Honkela -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski