Timezone: »
Decentralized deep learning algorithms leverage peer-to-peer communication of model parameters and/or gradients over communication graphs among the learning agents with access to their private data sets. The majority of the studies in this area focuses on achieving high accuracy, many at the expense of increased communication overhead among the agents. However, large peer-to-peer communication overhead often becomes a practical challenge, especially in harsh environments such as for an underwater sensor network. In this paper, we aim to reduce communication overhead while achieving similar performance as the state-of-the-art algorithms. To achieve this, we use the concept of Minimum Connected Dominating Set from graph theory that is applied in ad hoc wireless networks to address communication overhead issues. Specifically, we propose a new decentralized deep learning algorithm called minimum connected Dominating Set Model Aggregation (DSMA). We investigate the efficacy of our method for different communication graph topologies with a small to large number of agents using varied neural network model architectures. Empirical results on benchmark data sets show a significant (up to 100X) reduction in communication time while preserving the accuracy or in some cases increasing it compared to the state-of-the-art methods. We also present an analysis to show the convergence of our proposed algorithm.
Author Information
Fateme Fotouhi (Iowa State University)
Aditya Balu (Iowa State University)
Zhanhong Jiang (Johnson Controls)
Yasaman Esfandiari (HRL Laboratories)
Salman Jahani (SAP Labs LLC)
Soumik Sarkar (Iowa State University)
More from the Same Authors
-
2021 : Distributed Deep Learning for Persistent Monitoring of agricultural Fields »
Yasaman Esfandiari · Koushik Nagasubramanian · Fateme Fotouhi · Patrick Schnable · Baskar Ganapathysubramanian · Soumik Sarkar -
2021 : Cross-Modal Virtual Sensing for Combustion Instability Monitoring »
Tryambak Gangopadhyay · Vikram Ramanan · Chakravarthy S.R. · Soumik Sarkar -
2022 : 3D Reconstruction of Protein Complex Structures Using Synthesized Multi-View AFM Images »
Jaydeep Rade · Soumik Sarkar · Anwesha Sarkar · Adarsh Krishnamurthy -
2022 : Enhancing System-level Safety in Autonomous Driving via Feedback Learning »
Sin Yong Tan · Weisi Fan · Qisai Liu · Tichakorn Wongpiromsarn · Soumik Sarkar -
2022 : DriveCLIP: Zero-shot transfer for distracted driving activity understanding using CLIP »
Md Zahid Hasan · Ameya Joshi · Mohammed Shaiqur Rahman · Venkatachalapathy Archana · Anuj Sharma · Chinmay Hegde · Soumik Sarkar -
2022 : Generative Design of Material Microstructures for Organic Solar Cells using Diffusion Models »
Ethan Herron · Xian Yeow Lee · Aditya Balu · Baskar Ganapathysubramanian · Soumik Sarkar · Adarsh Krishnamurthy -
2022 : A study of natural robustness of deep reinforcement learning algorithms towards adversarial perturbations »
Qisai Liu · Xian Yeow Lee · Soumik Sarkar -
2021 Poster: Differentiable Spline Approximations »
Minsu Cho · Aditya Balu · Ameya Joshi · Anjana Deva Prasad · Biswajit Khara · Soumik Sarkar · Baskar Ganapathysubramanian · Adarsh Krishnamurthy · Chinmay Hegde -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2018 Poster: Online Robust Policy Learning in the Presence of Unknown Adversaries »
Aaron Havens · Zhanhong Jiang · Soumik Sarkar -
2017 Poster: Collaborative Deep Learning in Fixed Topology Networks »
Zhanhong Jiang · Aditya Balu · Chinmay Hegde · Soumik Sarkar