Timezone: »
In recent years, geometric deep learning has gained attraction due to both the need for machine learning on structured data (e.g., graphs) and the increasing availability of this type of data. Extensions of deep convolutional architectures to non-Euclidean domains in particular are a powerful technique in sensor network applications --- which can be seen as graphs --- and 3D model analysis --- which can be seen as manifolds. While recent works have provided a better theoretical understanding of why convolutional neural network architectures work well on graphs of moderate size, in the large-scale regime that is the setting of most problems of interest, their behavior is not as well understood. In this paper, we bridge this gap by modeling large graphs as samples from manifolds and studying manifold neural networks (MNNs). Our main contribution is to define a manifold convolution operation which, when ``discretized'' in both the space and time domains, is consistent with the practical implementation of a graph convolution. We then show that graph neural networks (GNNs) can be particularized from MNNs, which in turn are the limits of these GNNs. We conclude with numerical experiments showcasing an application of the MNN to point-cloud classification.
Author Information
Zhiyang Wang (University of Pennsylvania)
Luana Ruiz (University of Pennsylvania)
Luana Ruiz received the B.Sc. degree in electrical engineering from the University of São Paulo, Brazil, and the M.Sc. degree in electrical engineering from the École Supérieure d'Electricité (now CentraleSupélec), France, in 2017. She is currently a Ph.D. candidate with the Department of Electrical and Systems Engineering at the University of Pennsylvania. Her research interests are in the fields of graph signal processing and machine learning over network data. She was awarded an Eiffel Excellence scholarship from the French Ministry for Europe and Foreign Affairs between 2013 and 2015 and, in 2019, received a best student paper award at the 27th European Signal Processing Conference.
Alejandro Ribeiro (University of Pennsylvania)
More from the Same Authors
-
2021 : State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards »
Miguel Calvo-Fullana · Santiago Paternain · Alejandro Ribeiro -
2022 Poster: A Lagrangian Duality Approach to Active Learning »
Juan Elenter · Navid Naderializadeh · Alejandro Ribeiro -
2022 Poster: coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Graphon Neural Networks and the Transferability of Graph Neural Networks »
Luana Ruiz · Luiz Chamon · Alejandro Ribeiro -
2020 Poster: Probably Approximately Correct Constrained Learning »
Luiz Chamon · Alejandro Ribeiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Constrained Reinforcement Learning Has Zero Duality Gap »
Santiago Paternain · Luiz Chamon · Miguel Calvo-Fullana · Alejandro Ribeiro -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2017 Poster: Approximate Supermodularity Bounds for Experimental Design »
Luiz Chamon · Alejandro Ribeiro -
2017 Poster: First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization »
Aryan Mokhtari · Alejandro Ribeiro -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro