Timezone: »
In graph learning, there have been two main inductive biases regarding graph-inspired architectures: On the one hand, higher-order interactions and message passing work well on homophilous graphs and are leveraged by GCNs and GATs. Such architectures, however, cannot easily scale to large real-world graphs. On the other hand, shallow (or node-level) models using ego features and adjacency embeddings work well in heterophilous graphs. In this work, we propose a novel scalable shallow method -- GLINKX -- that can work both on homophilous and heterophilous graphs. GLINKX leverages (i) novel monophilous label propagations (ii) ego/node features, (iii) knowledge graph embeddings as positional embeddings, (iv) node-level training, and (v) low-dimensional message passing, to achieve scaling in large graphs. We show the effectiveness of GLINKX on several homophilous and heterophilous datasets.
Author Information
Marios Papachristou (Cornell)
Rishab Goel (Borealis AI)
Frank Portman (Twitter)
Matthew Miller (Massachusetts Institute of Technology)
Rong Jin
More from the Same Authors
-
2022 : An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation »
Ziquan Liu · Yi Xu · Yuanhong Xu · Qi Qian · Hao Li · Rong Jin · Xiangyang Ji · Antoni Chan -
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: DDXPlus: A New Dataset For Automatic Medical Diagnosis »
Arsene Fansi Tchango · Rishab Goel · Zhi Wen · Julien Martel · Joumana Ghosn -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Towards Trustworthy Automatic Diagnosis Systems by Emulating Doctors' Reasoning with Deep Reinforcement Learning »
Arsene Fansi Tchango · Rishab Goel · Julien Martel · Zhi Wen · Gaetan Marceau Caron · Joumana Ghosn -
2022 Poster: Towards Trustworthy Automatic Diagnosis Systems by Emulating Doctors' Reasoning with Deep Reinforcement Learning »
Arsene Fansi Tchango · Rishab Goel · Julien Martel · Zhi Wen · Gaetan Marceau Caron · Joumana Ghosn -
2022 Poster: DDXPlus: A New Dataset For Automatic Medical Diagnosis »
Arsene Fansi Tchango · Rishab Goel · Zhi Wen · Julien Martel · Joumana Ghosn -
2022 Poster: Stability and Generalization Analysis of Gradient Methods for Shallow Neural Networks »
Yunwen Lei · Rong Jin · Yiming Ying