Timezone: »
Shift-Robust Node Classification via Graph Clustering Co-training
Qi Zhu · Chao Zhang · Chanyoung Park · Carl Yang · Jiawei Han
Event URL: https://openreview.net/forum?id=CXm7uzRlvxf »
It is widely known that machine learning models only achieve sub-optimal performance when testing data exhibit distribution shift against training \ie, $\Pr_\text{train}(X,Y) \neq \Pr_\text{test}(X,Y)$. Although Graph Neural Networks (GNNs) have become de facto models for semi-supervised learning tasks, they suffer even more from distribution shift because multiple types of shifts origin from not only node features but graph structures. Existing domain adaptation methods only work for specific type of shifts. In response, we propose Shift-Robust Node Classification (SRNC) - a unified domain adaptation framework for different kinds of distribution shifts on graph. Specifically, we co-train an unsupervised cluster GNN, which captures the data distribution by graph homophily on target graph. Then a shift-robust classifier is optimized on training graph and pseudo samples from target graph, which are provided by cluster GNN. Compared to the existing domain adaptation algorithms on graph, our approach works for both open-set and close-set shifts with convergence guarantees.In our experiments, the classification accuracy is improved at least $3\%$ against the second-best baseline under open-set shifts. On time-evolving graph with close-set shift, existing domain adaption algorithms can barely improve the generalization if not worse. SRNC is still able to mitigate the negative effect ($>2\%$ absolute improvements) of the shift across different testing-times.
It is widely known that machine learning models only achieve sub-optimal performance when testing data exhibit distribution shift against training \ie, $\Pr_\text{train}(X,Y) \neq \Pr_\text{test}(X,Y)$. Although Graph Neural Networks (GNNs) have become de facto models for semi-supervised learning tasks, they suffer even more from distribution shift because multiple types of shifts origin from not only node features but graph structures. Existing domain adaptation methods only work for specific type of shifts. In response, we propose Shift-Robust Node Classification (SRNC) - a unified domain adaptation framework for different kinds of distribution shifts on graph. Specifically, we co-train an unsupervised cluster GNN, which captures the data distribution by graph homophily on target graph. Then a shift-robust classifier is optimized on training graph and pseudo samples from target graph, which are provided by cluster GNN. Compared to the existing domain adaptation algorithms on graph, our approach works for both open-set and close-set shifts with convergence guarantees.In our experiments, the classification accuracy is improved at least $3\%$ against the second-best baseline under open-set shifts. On time-evolving graph with close-set shift, existing domain adaption algorithms can barely improve the generalization if not worse. SRNC is still able to mitigate the negative effect ($>2\%$ absolute improvements) of the shift across different testing-times.
Author Information
Qi Zhu (University of Illinois, Urbana Champaign)
Chao Zhang (Georgia Institute of Technology)
Chanyoung Park (Korea Advanced Institute of Science and Technology)
Carl Yang (Emory University)
Jiawei Han (University of Illinois at Urbana-Champaign)
More from the Same Authors
-
2021 Spotlight: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2023 Poster: AdaPlanner: Adaptive Planning from Feedback with Language Models »
Haotian Sun · Yuchen Zhuang · Lingkai Kong · Bo Dai · Chao Zhang -
2023 Poster: Better with Less: A Data-Centric Prespective on Pre-Training Graph Neural Networks »
Jiarong Xu · Renhong Huang · XIN JIANG · Yuxuan Cao · Carl Yang · Chunping Wang · YANG YANG -
2023 Poster: Open Visual Knowledge Extraction via Relation-Oriented Multimodality Model Prompting »
Hejie Cui · Xinyu Fang · Zihan Zhang · Ran Xu · Xuan Kan · Xin Liu · Manling Li · Yangqiu Song · Carl Yang -
2023 Poster: Interpretable Prototype-based Graph Information Bottleneck »
Sangwoo Seo · Sungwon Kim · Chanyoung Park -
2023 Poster: WalkLM: A Uniform Language Model Fine-tuning Framework for Attributed Graph Embedding »
Yanchao Tan · Zihao Zhou · Hang Lv · Weiming Liu · Carl Yang -
2023 Poster: May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations »
Rui Feng · Qi Zhu · Huan Tran · Binghong Chen · Aubrey Toland · Rampi Ramprasad · Chao Zhang -
2023 Poster: Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms »
Alexander Bukharin · Yan Li · Yue Yu · Qingru Zhang · Zhehui Chen · Simiao Zuo · Chao Zhang · Songan Zhang · Tuo Zhao -
2023 Poster: Density of States Prediction of Crystalline Materials via Prompt-guided Multi-Modal Transformer »
Namkyeong Lee · Heewoong Noh · Sungwon Kim · Dongmin Hyun · Gyoung S. Na · Chanyoung Park -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2022 Poster: UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification »
Yanbo Xu · Alind Khare · Glenn Matlin · Monish Ramadoss · Rishikesan Kamaleswaran · Chao Zhang · Alexey Tumanov -
2022 Poster: End-to-end Stochastic Optimization with Energy-based Model »
Lingkai Kong · Jiaming Cui · Yuchen Zhuang · Rui Feng · B. Aditya Prakash · Chao Zhang -
2022 Poster: Generating Training Data with Language Models: Towards Zero-Shot Language Understanding »
Yu Meng · Jiaxin Huang · Yu Zhang · Jiawei Han -
2022 Poster: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2021 Poster: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2021 Poster: Universal Graph Convolutional Networks »
Di Jin · Zhizhi Yu · Cuiying Huo · Rui Wang · Xiao Wang · Dongxiao He · Jiawei Han -
2021 Poster: When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting »
Harshavardhan Kamarthi · Lingkai Kong · Alexander Rodriguez · Chao Zhang · B. Aditya Prakash -
2021 Poster: Federated Graph Classification over Non-IID Graphs »
Han Xie · Jing Ma · Li Xiong · Carl Yang -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training data »
Qi Zhu · Natalia Ponomareva · Jiawei Han · Bryan Perozzi -
2021 Poster: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization »
Qi Zhu · Carl Yang · Yidan Xu · Haonan Wang · Chao Zhang · Jiawei Han -
2021 Poster: COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining »
Yu Meng · Chenyan Xiong · Payal Bajaj · saurabh tiwary · Paul Bennett · Jiawei Han · XIA SONG -
2019 Poster: Spherical Text Embedding »
Yu Meng · Jiaxin Huang · Guangyuan Wang · Chao Zhang · Honglei Zhuang · Lance Kaplan · Jiawei Han -
2014 Poster: Robust Tensor Decomposition with Gross Corruption »
Quanquan Gu · Huan Gui · Jiawei Han -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2009 Poster: Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models »
Jing Gao · Feng Liang · Wei Fan · Yizhou Sun · Jiawei Han