Timezone: »
Automated machine learning (AutoML) offers the promise of translating raw data into accurate predictions without the need for significant human effort, expertise, and manual experimentation. In this workshop, we introduce AutoGluon, a state-of-the-art and easy-to-use toolkit that empowers multimodal AutoML. Different from most AutoML systems that focus on solving tabular tasks containing categorical and numerical features, we consider supervised learning tasks on various types of data including tabular features, text, image, time series, as well as their combinations. We will introduce the real-world problems that AutoGluon can help you solve within three lines of code and the fundamental techniques adopted in the toolkit. Rather than diving deep into the mechanisms underlining each individual ML models, we emphasize on how you can take advantage of a diverse collection of models to build an automated ML pipeline. Our workshop will also emphasize on the techniques behind automatically building and training deep learning models, which are powerful yet cumbersome to manage manually.
Check workshop website: https://autogluon.github.io/neurips2022-autogluon-workshop/
Author Information
Xingjian Shi (Amazon Web Services)
Nick Erickson (Amazon Web Services)
Caner Turkmen (Amazon Web Services)
Yi Zhu (AWS)
More from the Same Authors
-
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2022 : Quantifying Causal Contribution in Rare Event Data »
Caner Turkmen · Dominik Janzing · Oleksandr Shchur · Lenon Minorics · Laurent Callot -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2021 Poster: Blending Anti-Aliasing into Vision Transformer »
Shengju Qian · Hao Shao · Yi Zhu · Mu Li · Jiaya Jia -
2021 Poster: Progressive Coordinate Transforms for Monocular 3D Object Detection »
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue -
2020 Poster: Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation »
Rasool Fakoor · Jonas Mueller · Nick Erickson · Pratik Chaudhari · Alexander Smola