Timezone: »
While deep learning models are widely used in medical image segmentation, they are typically not designed to generalize to unseen segmentation tasks involving new anatomies, image modalities, or labels. Generally, given a new segmentation task, researchers will design and train a new model or fine-tune existing models. This is time-consuming, even for machine learning researchers, and poses a substantial barrier for clinical researchers, who often lack the resources or expertise to train new models. In this paper, we present a model that can solve new unseen medical segmentation tasks in a single forward pass at inference without retraining or fine-tuning. Our task-amortization model, UniverSeg, can segment a wide range of datasets as well as generalize to new ones. A UniverSeg network takes as input the target image to be segmented and a small set of example images and label maps representing the desired task and outputs a segmentation map. We train the proposed model on a large collection of over 85 medical imaging datasets with varying anatomies and modalities. This encourages the model to be task-agnostic and instead learn to transfer the relevant information from the example set to the target image, enabling segmentation even in tasks unseen during training. In preliminary experiments, we find that using only one trained UniverSeg model to segment previously unseen tasks can achieve performance close to that of models specifically trained on those new tasks.
Author Information
Victor Butoi (MIT)
Jose Javier Gonzalez Ortiz (MIT)
Tianyu Ma (Cornell University )
John Guttag (Massachusetts Institute of Technology)
Mert Sabuncu (Cornell)
Adrian Dalca (MIT, HMS)
More from the Same Authors
-
2020 : Learning MRI contrast agnostic registration »
Malte Hoffmann · Adrian Dalca -
2021 : Sequential Decision Making with Limited Resources »
Hallee Wong · Maggie Makar · Aniruddh Raghu · John Guttag -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Conditional Contrastive Networks »
Emily Mu · John Guttag -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Contrast Invariant Feature Representations for Medical Image Analysis »
Yue Zhi, Russ Chua · Adrian Dalca -
2022 : Region-of-Interest Adaptive Acquisition for Accelerated MRI »
Zihui Wu · Tianwei Yin · Adrian Dalca · Katherine Bouman -
2022 : At the Intersection of Conceptual Art and Deep Learning: The End of Signature »
Kathleen Lewis · Divya Shanmugam · Jose Javier Gonzalez Ortiz · Agnieszka Kurant · John Guttag -
2022 : Contrastive Learning of Electrodermal Activity Representations for Stress Detection »
Katie Matton · Robert Lewis · John Guttag · Rosalind Picard -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 Poster: Characterizing the Ventral Visual Stream with Response-Optimized Neural Encoding Models »
Meenakshi Khosla · Keith Jamison · Amy Kuceyeski · Mert Sabuncu -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 Poster: Self-Distillation as Instance-Specific Label Smoothing »
Zhilu Zhang · Mert Sabuncu -
2020 Poster: Neural encoding with visual attention »
Meenakshi Khosla · Gia Ngo · Keith Jamison · Amy Kuceyeski · Mert Sabuncu -
2020 Oral: Neural encoding with visual attention »
Meenakshi Khosla · Gia Ngo · Keith Jamison · Amy Kuceyeski · Mert Sabuncu -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu -
2018 : Poster session »
David Zeng · Marzieh S. Tahaei · Shuai Chen · Felix Meister · Meet Shah · Anant Gupta · Ajil Jalal · Eirini Arvaniti · David Zimmerer · Konstantinos Kamnitsas · Pedro Ballester · Nathaniel Braman · Udaya Kumar · Sil C. van de Leemput · Junaid Qadir · Hoel Kervadec · Mohamed Akrout · Adrian Tousignant · Matthew Ng · Raghav Mehta · Miguel Monteiro · Sumana Basu · Jonas Adler · Adrian Dalca · Jizong Peng · Sungyeob Han · Xiaoxiao Li · Karthik Gopinath · Joseph Cheng · Bogdan Georgescu · Kha Gia Quach · Karthik Sarma · David Van Veen -
2018 : Oral session II »
Sil C. van de Leemput · Adrian Dalca · Karthik Gopinath -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Poster: Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels »
Zhilu Zhang · Mert Sabuncu -
2018 Spotlight: Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels »
Zhilu Zhang · Mert Sabuncu -
2018 Poster: Gaussian Process Prior Variational Autoencoders »
Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka